Structural Understanding of Intrinsically Disordered Proteins

Joe Passman

April 26, 2013

1

While I Have Your Attention...

Take Home Points of Talk:

- I. Disorder is prevalent in the eukaryotic proteome.
- 2. Importance of the λN protein
 - E Forms a transient complex used to suppress Rho protein
- Macromolecules may impact (thermo)dynamic aspects of folding.

Overview

Background

- What are disordered proteins... Why do they matter?
- Where does the λN fit in?

Experimental motivation

Interesting questions, goals, hypothesis

Current Work

Setup, techniques, preliminary results

Future Work

Background Rise, Prevalence, and Possible Roles of Disorder in Proteins

Disorder Becomes Apparent

- Early discovery
 - Bovine serum albumin binding sites (Karush, 1950)
- Later...
 - Rapid rise of genomic data (~1990)
 - Predictors of natural disordered regions (PONDRs)
 - Early proton NMR experiments (Daniels et al, 1978)

Disorder, Disorder, (most)Everywhere!

Hosoda et al, 2011

300<

270<

human

atha

scer

ecoli

bsub

pfur

6/24/2013

7

Why Did We Miss It?

Unobserved

- Bias of experiment
- Access to genomic data limited before ~1990
- Crystal structure relatively uninformative
- Ignored
 - Crystal structure artifacts dismissed
 - Disorder thought to be an artifact

a											
10	20	30	40	50	A B WANTER	70	80	90	100	110	120
PLEOCRESAPELIE	CAASTSOPT	PAASOAI NPO	CHOMP ATS	PAT PTOPS	CO-BAN-NOT	PCE LNSNS	A THICK SOG	AGMENTE	Alternation of	(PTO) POINT	SERVIN
130	140	150	160	170	180	190	200	210	220	230	240
250	260	270	280	290	300	310	320	330	340	350	DODLVL
370	380	300	AUX AUX	410	420	430	440	450	460	ATO	480
CRAMAN DO POWE	NOTO, OPON	POCOPACIPON	COMPANY NULL	IN BREEDO	OTTRACTION	NI-BACO-SO	DATES AND	I SARAN IN THE	TIPTAAPPE	ENT. SPIRES	No.
490	500.	510	5/20	530	540	500	000	570	080	500	600
610	620	630	640	650	660	670	680	690	700	710	720
418-111-48 00-00 1 730	740	750	760	770	780	790	BOO	810	820	BOAR PROPERT	840
IC ROPATOR B	TEFFASTAA	POR LANTIN	CHEFFORAN	THE REAL PROPERTY	OUTFIFTE	Malanatan	TENDANACA	MERCHANNER	FRANKING	OCCUTP NA	PROTE.
850	860	870	680	890	900	910	920	930	940	960	960
UDARAS INCOPTS 970	DER RAVER	990	1000	1010	1020	1030	1040	1050	1060	1070	1080
1090	1100	1110	1120	1100	520 X 1140	1150	1160	6.V)6 CTC V 1970	1180	1100	1200
	1222	MORIDIA			- NO		10-10-1VD 10		ANTON	1910	N RYPER
INCOMENTATION OF		A REAL PROPERTY	NUNUPUUKS	12-00	SHERVER R	STATE ON MICH		ALC: YEAR	City Dop	ALL ROAD REAL	MILLION P.P.
1330	1340	1350	1360	1370	1380	1300	1400	1410	1420	1430	1440
1450	1460	1470	1480	1400	1500	1510	1520	1530	1540	1550	1560
1570	1580	1500	1000	1010	1/20	1630	HE HARPY IN	LINE VIE CES	1860	1620	185
LENDING	MTQGCER V	12.240 (KIM-)	COLUMN STR		NO HANDLAND	AR OF QUINTS	SOCIET CORPORE		BORNIARD	CHICANO CHICANO	XPM II
1690	1700	1710	1720	1730	1740	1750	1760	1770	1780	.1790	3.80
1810	1820	1630	1840	1850	1860	1870	1880	1800	1900	1910	1020
1930	10-40	1950	1060	1970	1980	1090	2000	2010	2020	2030	2040
INCAGA AND STORE	Mar Har Hart	IN COLLECT	WHEN PODOOD	WENELKSNES	STATE NOR	TAK (VANCES	2120	-	XORE AND NO		PHODON
VESTE NEW YORKAL BUT ME	THE NEW AC	STREET, BURNEL	Dello conce	2000	20010/242/02	ALC: NO.	COLOR DE LOS	2100	e posso dest	2150	2100
2170	2180	2190	2200	2210	2220	2230	2240	2250	2260	2270	2280
2290	2300	2310	2320	2330	2340	2350	2360	2370	2380	2390	2400
INTERNAL POLINE			ADD VERIL	2017/							
2410	2420	2430	2440								
0						HA					
		TAZT	KEK		Bromo	6	77				

Nature Reviews | Molecular Cell Biology Dyson & Wright, 2005

What is Disorder in Proteins?

Definition:

 A protein that does not adopt a well-defined native structure when isolated in solution under nearphysiological conditions (Eliezer, 2009)

2 types

- Denatured state ensembles (DSEs)
- Intrinsically disordered proteins (IDPs)
- Vast and malleable configurational ensembles (CEs)
- Charged
- What can impact disorder?

Why are IDPs Interesting?

Diverse Roles!

- Regulatory
 - Homeostasis of signaling pathways
 - Translation/Transcription
- Structural
 - Flexible Linkers

AND..... They can kill you.

- Disease states
 - Cancer (lack of cell cycle regulation)
 - Brain (amyloid plaque formation)

Lee et al, 2003

Proposed Mechanisms

- Regulation
 - Folding upon binding
 - Highly specific / low affinity binding
- Multiple interaction sites
- Aggregation

6/24/2013

Background

The λN protein

6/24/2013

Structure

- 107 residues (1799 atoms)
- Positively charged side chains
 - Proportion of arginine to lysine: 22%

Structure	Position	Length (residues)	Visual Alpha Helix Beta Sheet
Helix	4-10	7	
Helix	12-20	9	
Helix	23-25	3	
Beta Strand	26-29	4	

Function

- Transient complex
- Interacts with
 - RNA
 - RNA polymerase
- End Result
 - Prevent termination of transcription

More on Interaction with RNA

6/24/2013

5'

The Case for $\lambda \, N$ as a Model System

- Regulatory function
- Multiple interaction partners
- Extensively unfolded in isolation
- Flexible structure

Background

Questions, hypothesis, and goals

What Are We Trying to Address?

Question

Which structural characteristics lead to the (thermo)dynamic propensity of IDPs to remain denatured?

Importance

- Ist step in addressing how the CEs of λ N are modified in response to molecular crowding stress
 - Establishes a baseline for comparison

Goldenberg, 2011

Hypothesis/Expected Outcomes

• CEs of the prototype λ N

- Sensitive to changes in solution conditions
- Local structure may be modulated more readily than global structure
- Can be modulated through different levels of molecular crowding stress

Will remain extensively unfolded

•
$$\langle R_g \rangle \approx 30 \text{ Å}$$

Goals

Provide a set of atomistic properties

- Quantify correspondence with macroscopic ensembleaveraged experimental data
- Develop reference point for crowding studies

Context: Alzheimer's Disease

