Functional Genomics Overview

RORY STARK PRINCIPAL BIOINFORMATICS ANALYST CRUK – CAMBRIDGE INSTITUTE *18 SEPTEMBER 2017*

Agenda

- What is Functional Genomics?
- RNA Transcription/Gene Expression
- Measuring Gene Expression
 - Microarrays
 - High-throughput Sequencing
- Transcriptional Regulation
 - Transcription factors
 - Epigenetics
 - Post-transcriptional regulation

2

The Genome

3

- Each cell contains a complete copy of the genome, distributed along chromosomes (compressed and entwined DNA)
- 3x10⁹ (3Gb) base pairs in human DNA: 6 meters in each cell!
- Encodes blueprint for all cellular structures and activities and which cells go where (somehow...)

Functional Genomics: Sequence vs. Function

What accounts for the difference in phenotype?

Different Genomes!

What accounts for the difference in phenotype?

Different Functions!

The Central Dogma of Molecular Biology

So, what is functional genomics?

- Where sequence-based genomics looks at the structure and components of genomes, and analyses the similarities and differences between genomes...
- Functional genomics looks at how genomes result in cellular phenotypes, and analyses differences in how the same genome functions differently in different cells, and how changes in genomes alter function

8

Gene Expression (RNA Transcripts)

Gene expression experiments

- Measure the expression levels of many genes in parallel
- Ideally, we'd measure all protein levels
- However, proteomics is difficult!
- Instead, use mRNA ("transcript") levels a a proxy for protein levels
- (How good a proxy is RNA?)
- Several good ways to measure RNA
- Analyses:
 - Expression levels
 - Differences in expression levels (DE)
 - Patterns of expression
 - Splicing and isoforms

Ghaemmaghami et al Nature 2003

What kinds of samples are we interested in?

- Different tissues, same organism
 - human brain/human liver
- Same tissue, different organism
 - human liver/mouse liver
 - wt/ko
- Same tissue, same organism, different condition
 - benign/tumour
 - treated/untreated
- Time course (effect of treatment over time)
- In vivo vs In vitro

Measuring Gene Expression

Reverse transcription (mRNA -> cDNA)

- Most RNA-seq involves
 large populations of cells
 (10⁶⁻⁷⁾
- Most RNA-seq involves sequencing cDNA synthesized using reverse transcription
- A-A-A-A 3' mRNA 3' T-T-T-T 5' Oligo(dT) primer Incubate with reverse transcriptase to synthesize **cDNA** strand mRNA CDNA When cDNA strand is 2) completed, hydrolyze RNA strand **cDNA** Incubate with DNA 3 polymerase to synthesize second DNA strand S1 nuclease Double-stranded DNA cuts loop Incubate with terminal 4 transferase to add single-stranded tails C-C-C-C C-C-C-C Double-stranded cDNA CANCER CAMBRIDGE 13 RESEARCH INSTITUTE
- Most RNA-seq involves significant amplification of cDNA molecules via PCR

Measuring cDNA: Microarrays

Use hybridization to measure abundance of mRNA transcripts

Fix "probes" to a solid support

Hybridize labeled samples of mRNA to probes

Use labels to measure hybridization intensity

Microarrays: Scanning

Typically less than 1 inch width, spot diameter ! 0.1 mm

Measuring cDNA: RNA-seq

- High-throughput sequencing allows us to sequence a representative sample of the cDNA population "directly"
- Each sequence "read" is aligned back to a reference genome/transcriptome to see where it was transcribed from
- We can count how many transcripts came from each gene

Trends in Transcriptomics

- Single-cell sequencing

– Nanopore Sequencing

- Full-length transcript sequencing
- Direct RNA sequencing

Beyond Gene Expression: Transcriptional Regulation

Transcriptional regulatory elements

Regulatory elements of interest include...

TRANSCRIPTION FACTORS

- ChIP
- **HISTONE MARKS**
 - ChIP
- **DNA METHYLATION**
 - RRBS
 - MeDIP
- **OPEN CHROMATIN**
 - DNase Hypersensitivity
 - ATAC
- **ÇHROMATIN STRUCTURE**
 - HiC
- **RNA POLYMERASE**
 - Pol II ChIP

Cell differentiation

Developmental potential

Totipotent

Zygote

Pluripotent

ICM/ES cells, EG cells, EC cells, mGS cells iPS cells

Multipotent

Adult stem cells (partially reprogrammed cells?)

Unipotent

Differentiated cell types

Epigenetic status

Global DNA demethylation

Only active X chromosomes; Global repression of differentiation genes by Polycomb proteins; Promoter hypomethylation

X inactivation; Repression of lineage-specific genes by Polycomb proteins; Promoter hypermethylation

Fibroblast Muscle Promoter hypermethylation

Macrophage

And Beyond...

Post-transcriptionalRegulation

-Translational Efficiency

Acknowledgements

Former lecturers who contributed to these lecture notes: Benilton S Carvalho Nuno Barbosa-Morais Stephen J Eglan Natalie Thorne

