Introduction to metagenomics

Agnieszka S. Juncker

Center for Biological Sequence Analysis Technical University of Denmark

- Metagenomics
- The human gut

From genomics to metagenomics

Genomics

E. coli, Science, 1997

Human, Nature/Science, 2001

Metagenomics

Saragasso sea, Science, 2004

Human gut, Nature, 2010

What is Metagenomics?

Metagenomics (Environmental Genomics, Ecogenomics or Community Genomics) is the study of genetic material recovered directly from environmental samples.

Chen & Pachter, 2005 Metagenomics is application of modern genomic techniques to the study of communities of microbial organisms directly in their natural environments, bypassing the need for isolation and lab cultivation of individual species

A) Most microbial activities are carried out by complex communities of microorganisms ...

B) 99% of microbial species cannot currently be cultivated

A hand full of soil ...

- Culturing: a few hundreds species per gram
- 16S sequencing: few thousands per gram

CENTERFO RBIOLOGI CALSEQU ENCEANA LYSIS CBS

Why Metagenomics?

Discovery of:

- novel natural products
- new antibiotica
- new molecules with new functions
- new enzymes and bioactive molecules
- what is a genome/species
- diversity of life
- interplay between human and microbes
- how do microbial communities work and how stable are they
- holistic view on biology

Environments

Design of study and sampling (sample size, timing, replicates)

Avoid contamination

Pre-treatment, e.g. filtering

CENTERFO RBIOLOGI CALSEQU ENCEANA LYSIS CBS

DNA extraction from sample

Lysation and DNA extraction, many methods available, different biases

Metagenomics approaches

Sequence-based (computational)

Functional (experimental)

Sequence-based metagenomics

16S rDNA sequencing Whole-genome sequencing Environmental Sample Sampling **DNA** extraction Phylogeny PCR+sequencing of 16S rDNA Random End Sequencing Sequencin Phylogeny analysis Assembly Assembly Comparison Gene finding Predict & Analyze Genes and annotation Compare Genes from Environments

Comparison

Metagenomics data analysis

CENTERFO RBIOLOGI CALSEQU ENCEANA LYSIS CBS

Metagenomics data analysis – wrap up

- Sequence reads
- Assembly (contigs)
- Gene prediction
- Count matrix calculation (in case of many samples)
- Taxonomy annotation (BLAST, LCA)
- Functional annotation (COG, KEGG, GO)
- Main statistical analysis

Project examples

The human microbiome

Human Microbiota

CENTERFO RBIOLOGI CALSEQU ENCEANA LYSIS CBS

Human intestines

Metagenomics of the human gut

Vol 464 4 March 2010 doi:10.1038/nature08821

nature

A human gut microbial gene catalogue established by metagenomic sequencing

Junjie Qin¹*, Ruiqiang Li¹*, Jeroen Raes^{2,3}, Manimozhiyan Arumugam², Kristoffer Solvsten Burgdorf⁴, Chaysavanh Manichanh⁵, Trine Nielsen⁴, Nicolas Pons⁶, Florence Levenez⁶, Takuji Yamada², Daniel R. Mende², Junhua Li^{1,7}, Junming Xu¹, Shaochuan Li¹, Dongfang Li^{1,8}, Jianjun Cao¹, Bo Wang¹, Huiqing Liang¹, Huisong Zheng¹, Yinlong Xie^{1,7}, Julien Tap⁶, Patricia Lepage⁶, Marcelo Bertalan⁹, Jean-Michel Batto⁶, Torben Hansen⁴, Denis Le Paslier¹⁰, Allan Linneberg¹¹, H. Bjørn Nielsen⁹, Eric Pelletier¹⁰, Pierre Renault⁶, Thomas Sicheritz-Ponten⁹, Keith Turner¹², Hongmei Zhu¹, Chang Yu¹, Shengting Li¹, Min Jian¹, Yan Zhou¹, Yingrui Li¹, Xiuqing Zhang¹, Songgang Li¹, Nan Qin¹, Huanming Yang¹, Jian Wang¹, Søren Brunak⁹, Joel Doré⁶, Francisco Guarner⁵, Karsten Kristiansen¹³, Oluf Pedersen^{4,14}, Julian Parkhill¹², Jean Weissenbach¹⁰, MetaHIT Consortium[†], Peer Bork², S. Dusko Ehrlich⁶ & Jun Wang^{1,13}

To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence, from faecal samples of 124 European individuals. The gene et, ~150 times larger than the human gene complement, contains an overwhelming majority of the prevalent (more frequent) microbial genes of the cohort and probably includes a large proportion of the prevalent human intestinal microbial genes. The genes are largely shared among individuals of the cohort. Over 9991 of the genes are bacterial, indicating that the entire cohort harbours between 1,000 and 1,150 prevalent bacterial species and each individual at least 160 such species, which are also largely shared. We define and describe the minimal gut metagenome and the minimal gut bacterial genome in terms of functions present in all individuals and most bacteria, respectively.

	Human (isolated)	Microbiota
weight	~ 50-100 kg	~ 2 kg
species	1	1000-5000
cells	~ 10 ¹²	10 ¹³ - 10 ¹⁴
genes	25.000	>4.000.000

Bacteria of the gut

Arumugam et al. (Nature, 2011)

Functions of the human gut microbiome

Enterotypes

Acknowledgements

Damian Plichta

Marcelo Bertalan

H. Bjørn Nielsen

Falk Hildebrand (from Jeroen's group)

Lene Blicher

Laurent Gautier

