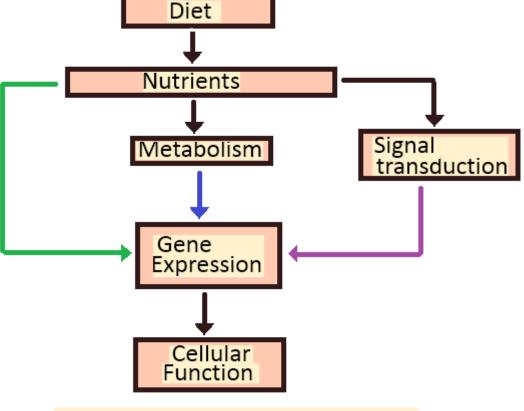
NUTRITIONAL GENOMICS; NUTRIGENETICS & NUTRIGENOMICS

Presented by Samaneh Palizban Supervised by Dr. A. Dastgheyb

O G ANA SA O G

Outline:


- Our idea about the topic
 - Categorizing Foods
 - Mechanisms of interactions
 - Definition of Nutrigenomics and Nutrigenetics
 - Future prospective
- Conclusion

Nutritional Genomics: Nutrigenetics & Nutrigenomics

Nutrient-gene interactions:

- Directly effects
- Indirectly effects

Disease progression or prevention

Bioactive Food Components

- Vitamins
 - Vitamin A
 - Vitamin D
 - Vitamin E
 - Vitamin C
 - Biotin
- Minerals
 - Calcium
 - Iron
 - Zinc
 - Selenium

Macronutients: Other food

- Fats
 - Fatty acids
 - Cholestrol
- Carbohydrates
 - Glucose
- Proteins
 - Amino acids

components:

- Flavonoids
- Polyphenols
- Xenobiotics

Minerals & Nutrigenomics

- Minerals
 - Iron
 - Calcium
 - Zinc
 - Iodine
 - Selenium
 - Magnesium
 - Potassium

 Participating in proteins and enzyme structures
 Cofactor functioning
 Interacting with transcription factors -> altering gene expression

As a signal in a cellular pathway

Iron

7

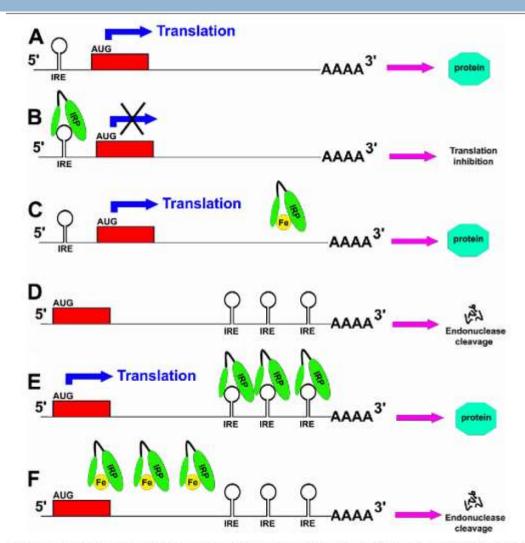
Nutritional sources

Related Disease

Participating in biomolecules

Iron interacting with genome

IRE–IRP regulatory system: IRP1, IRP2


BMP/SMAD pathway signaling :
 SMAD1/5/8
 STAT3

IRE–IRP regulatory system ; An example of direct effect on gene expression

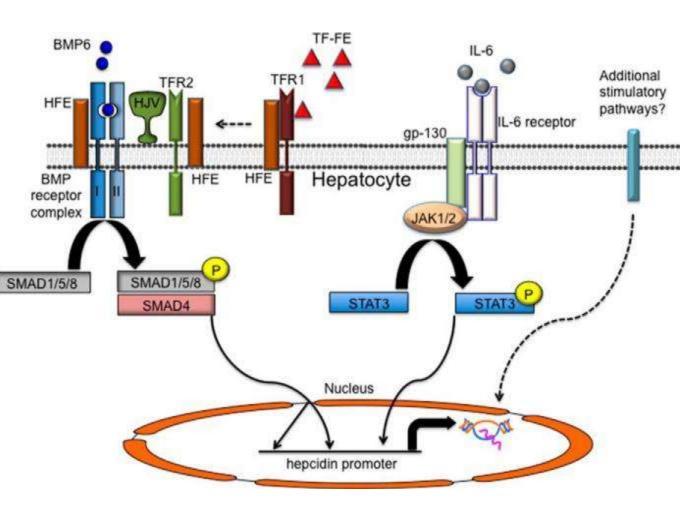
Iron Response
 Proteins:

9

- Transcription factors
- controllers of vertebrate iron metabolism
- major iron homeostasis genes

station modulation by the IDD-IDE cionalise nathway a The translation of transcripts containing an IDE

Regulation of Iron Metabolism by Hepcidin An example of indirect effect through signal transduction


TF-FE & TFR1

BMP/SMAD pathway:

SMAD1/5/8

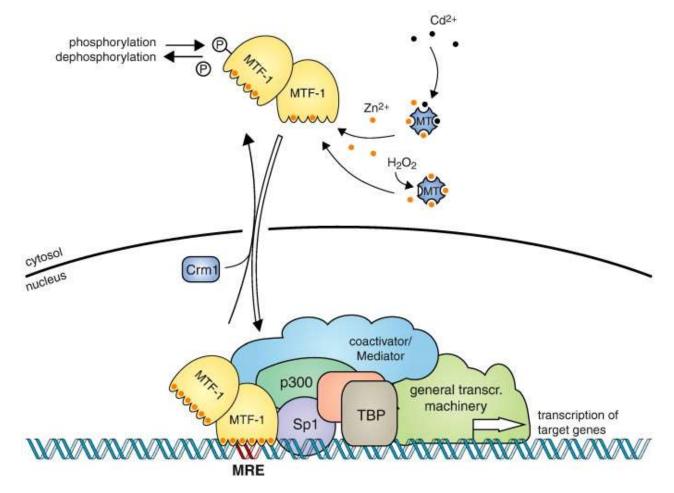
STAT3

regulating
 body iron
 homeostasis

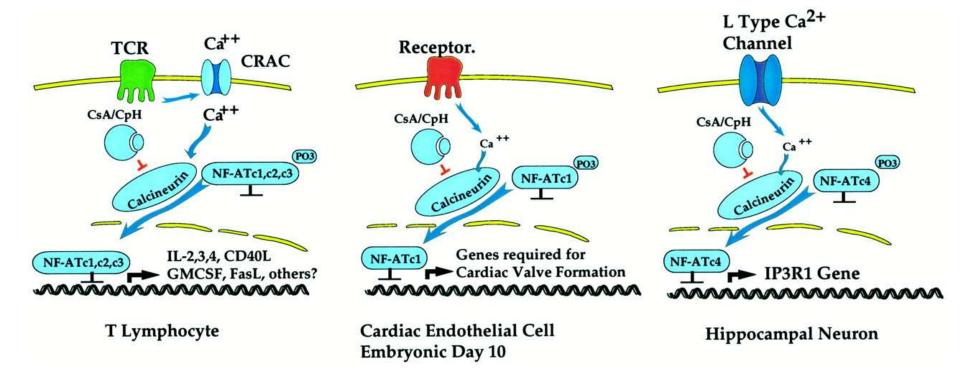
Zinc

11

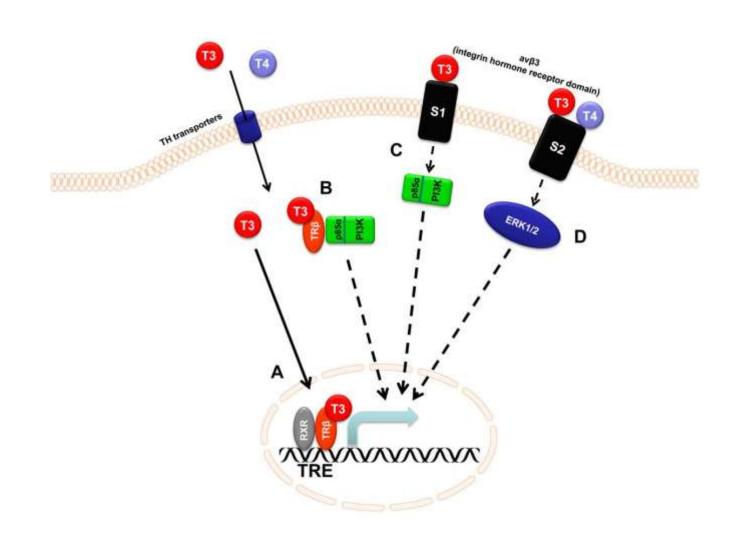
Nutritional Related sources function


Related function in our body

cofactor function


Zinc & gene expression

metal-responsive transcription factor 1 (MTF1)


Calcium

- Transcription factors
 - calcineurin
 - NF-AT

lodine

14

End of Part 1

15

Any Question Please?!

111

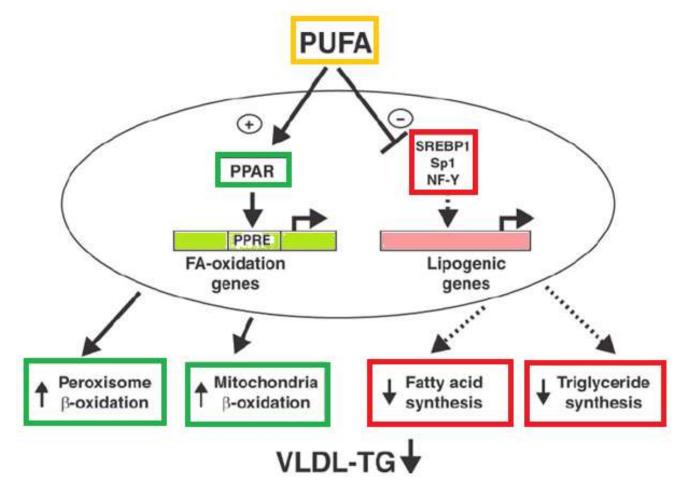
First Section Part 2:

Fatty Acids category Fat soluble vitamins category

Omega-3

17

A polyunsaturated fatty acids (PUFA)


- Neuroprotective (Alzheimer's disease)
- cardiovascular heart disease
- immune function
- bone health
- muscle tonus
- Cancer
- general quality of life in aging

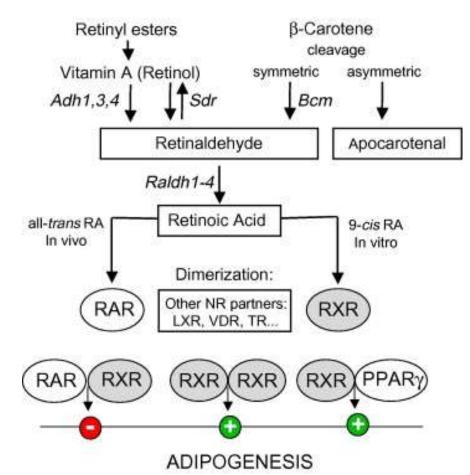
PUFA and modifying gene expression

18

PPARs, SREBPs, LXR, HNF4, ChREBP

Carotenoids

Carotenoids (most notably beta-carotene)


no role in the formation of vitamin A antioxidants and anti-inflammatory agents

- provitamin A , Vitamin A group (retinol, retinal, retinoic acid)
- promoting good vision (the retina of the eye), early atherosclerosis, cardiovascular disease ,skin aging and cancer development, immune system

Vitamin A and Gene Expression

20

- a ligand for nuclear receptors (RAR, RXR)
- Esp. in the retinoic acid form

Vitamin D

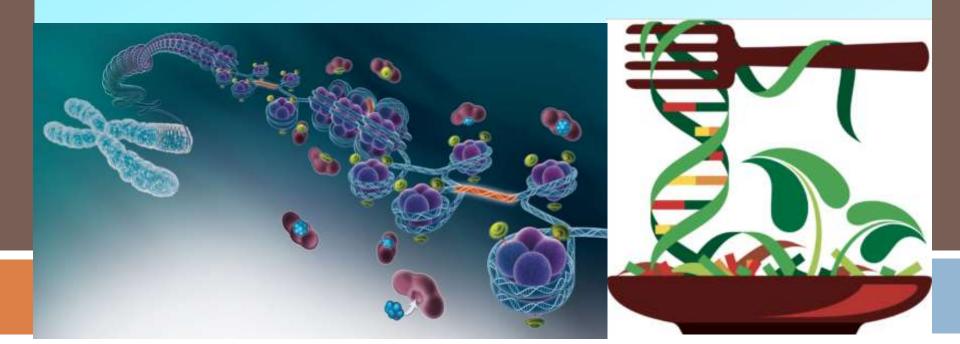

Regulating genes in:

- promoting intestinal calcium and phosphate absorption
- bone remodeling
- neuroprotective actions as Serotonin Production
- controlling cell growth and differentiation in a variety of tissues

1,25D/VDR signaling

- 22
- 1,25-Dihydroxyvitamin D₃ (1,25D)
 - The endocrine metabolite of vitamin D
 - Vitamin D receptor (VDR)

Vitamin E


- vitamin E family (α, β, γ, δ) tocopherols and the corresponding tocotrienols
 Inflammatory/Immune Response
- pregnane X receptor (PXR), a nuclear receptor regulating a variety of drug metabolizing enzymes

End of Part 2

24

Any Question Please?!

First Section Part 3: Affecting Epigenetic patterns as a way of nutrient gene interaction

Polyphenols

Flavonoids

- Resveratrol (3,5,4'-trihydroxy-trans-stilbene)
- Phytoalexins
- Tea catechins/epicatechins
 - epicatechin (EC),
 - epicatechin-3-gallate (ECG),
 - epigallocatechin (EGC),
 - epigallocatechin-3-gallate (EGC)

Genistein

- Phenolic Acids
- Lignans
- Stilbenes

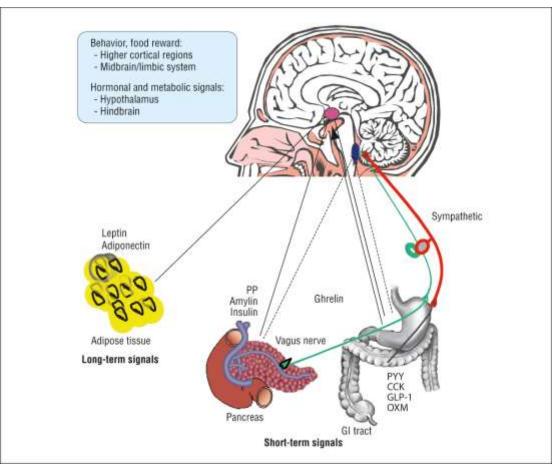
Flavonoids & interaction with genome

acting via:

- Alter concentrations of reactive oxygen species
- The klotho gene, transcription factors
- Effect on intercellular signaling molecules including nitrous oxide and pro-inflammatory cytokines

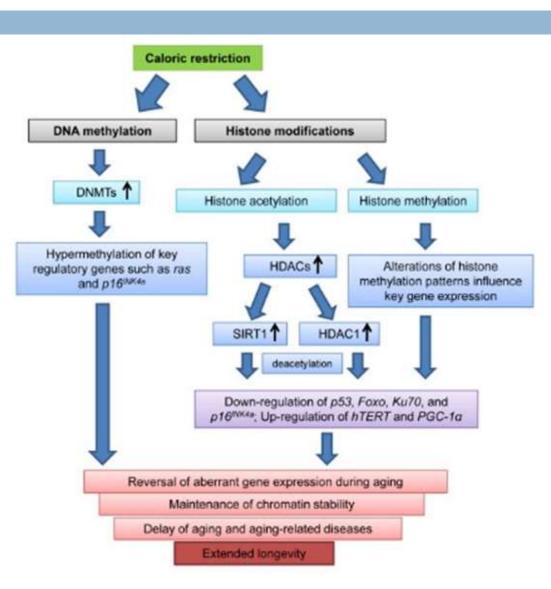
Epigenetic mechanisms

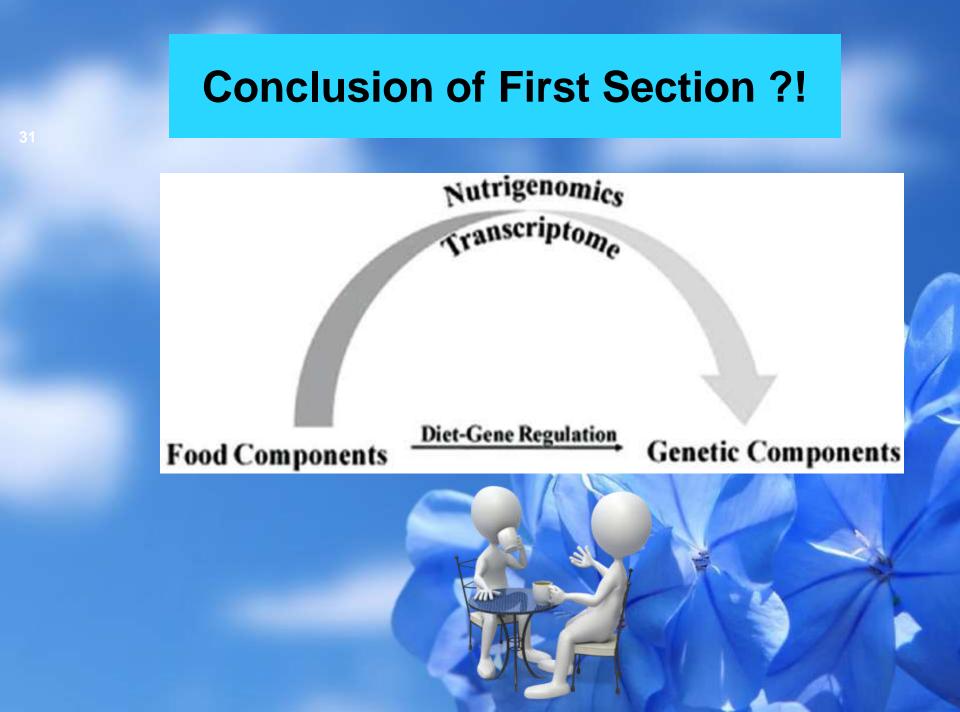
Studied on:


- Aging process
- Cancer
- Cardiovascular disease

Epigenetic Changes and Diet

Body Response to Nutritional State of Diet

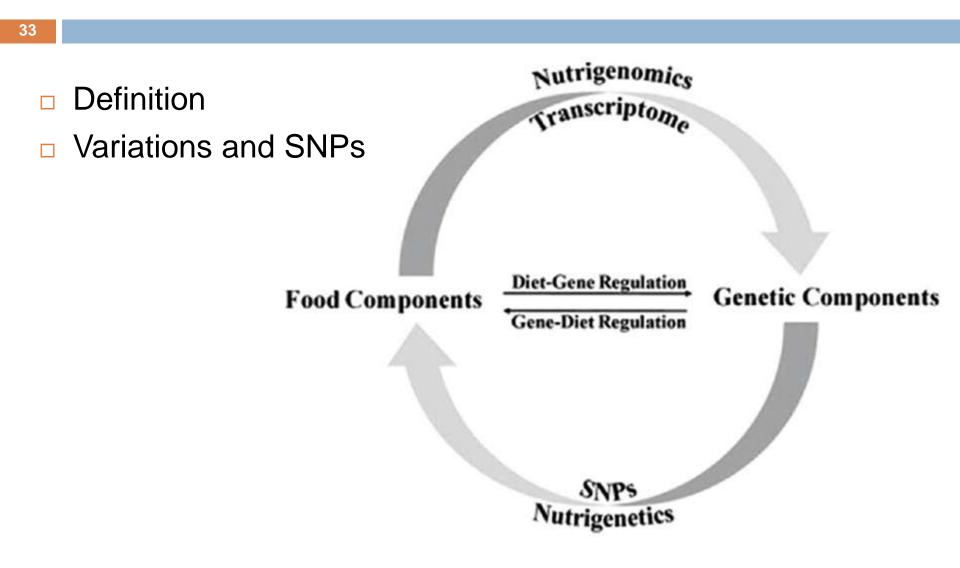

- □ Nutritional changes \rightarrow a complex signaling
 - Obesity \rightarrow resistance to the anorexigenic signals



Calorie Restriction in Humans

Caloric restriction → Altering epigenetic processes via:

- DNA methylation
- Histone
 modification

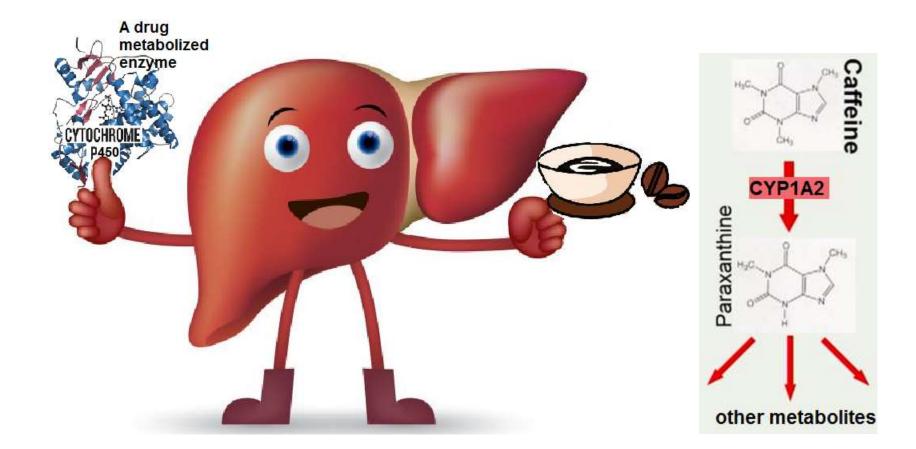


Section 2: Nutrigenetics

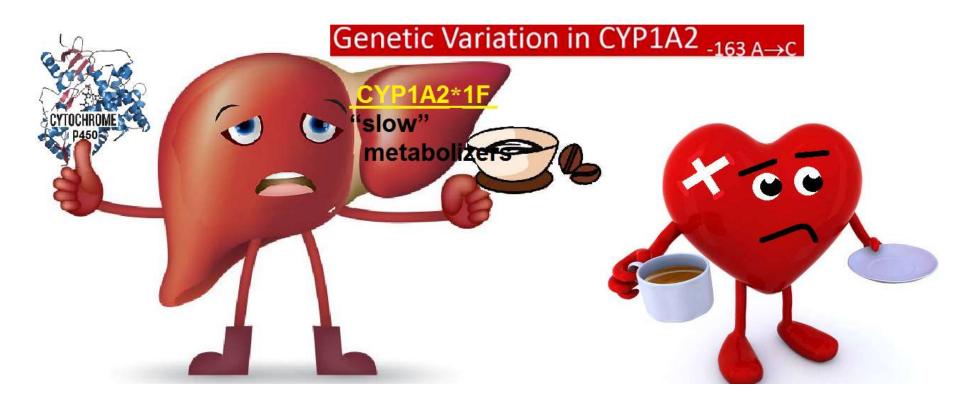
TERRET

20

Nutrigenetics



Coffee Story



Metabolizing the Caffeine

polymorphic cytochrome P450 1A2 enzyme (CYP1A2)

Polymorphism of CYP1A2

Polymorphism of CYP1A2 Cont'd.

JAMA. 2006 Mar 8;295(10):1135-41.

Coffee, CYP1A2 genotype, and risk of myocardial infarction.

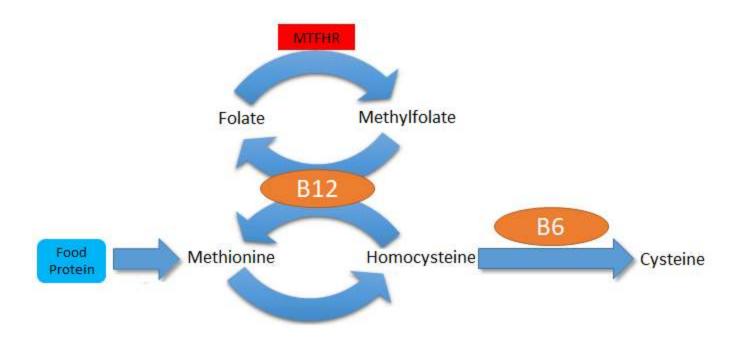
Cornelis MC¹, El-Sohemy A, Kabagambe EK, Campos H.

Author information

Cancer Epidemiol Biomarkers Prev. 2007 May;16(5):912-6.

The CYP1A2 genotype modifies the association between coffee consumption and breast cancer risk among BRCA1 mutation carriers.

Kotsopoulos J¹, Ghadirian P, El-Sohemy A, Lynch HT, Snyder C, Daly M, Domchek S, Randall S, Karlan B, Zhang P, Zhang S, Sun P, Narod SA.


J Hypertens. 2009 Aug;27(8):1594-601. doi: 10.1097/HJH.0b013e32832ba850.

CYP1A2 genotype modifies the association between coffee intake and the risk of hypertension.

Palatini P¹, <u>Ceolotto G</u>, <u>Ragazzo F</u>, <u>Dorigatti F</u>, <u>Saladini F</u>, <u>Papparella I</u>, <u>Mos L</u>, <u>Zanata G</u>, <u>Santonastaso M</u>.

MTHFR (methyltetrahydrofolate reductase)

A common polymorphism: C677T SNP (Ala²²²Val)

plasma homocysteine

Genetic variation in *TAS1R2* (Ile191Val) is associated with consumption of sugars in overweight and obese individuals in 2 distinct populations^{1–3}

Karen M Eny, Thomas MS Wolever, Paul N Corey, and Ahmed El-Sohemy

Nutrition Journal

Research

Open Acces

Improved weight management using genetic information to personalize a calorie controlled diet

Ioannis Arkadianos¹, Ana M Valdes², Efstathios Marinos³, Anna Florou¹, Rosalynn D Gill⁴ and Keith A Grimaldi^{*4}

Address: ¹The Dr Arkadianos Clinic, Messogion Av, Athens, Greece, ²Twin Research Unit, King's College London, UK, ³Biomedical Engineering Laboratory, National Technical University of Athens, Greece and ⁴Sciona Inc, Boulder, 80302, Colorado, USA

Email: Ioannis Arkadianos - idc.diet@eexi.gr; Ana M Valdes - ana.valdes@kcl.ac.uk; Efstathios Marinos - smarin@biomed.ntua.gr; Anna Florou - tsurekia@gmail.com; Rosalynn D Gill - rgill-garrison@sciona.com; Keith A Grimaldi * - kgrimaldi@sciona.com

Corresponding author

Gene	Gene symbol	Polymorphism	%homozygote wild type	% heterozygote	% homozygote variant	HWE p <
Angiotensin I converting enzyme	ACE	INS/DEL	14.6%	48.8%	36.6%	0.99
Apolipoprotein C-III	APOC3	3175C>G	73.3%	20.0%	6.7%	0.17
Cystathionine-beta-synthase	CBS	699C>T	53.5%	41.9%	4.7%	0.81
Cholesteryl ester transfer protein	CETP	279G>A	48.8%	39.5%	11.6%	0.86
Collagen, type I, alpha I	COLIAI	G Spl T	58.1%	34.9%	7.0%	0.94
Glutathione S-transferase MI	GSTMI	Deletion (7)	52.0%	0.0%	48.0%	N/A
Glutathione S-transferase pi	GSTPI	313A>G	57.8%	33.3%	8.9%	0.68
		341C>T	56.8%	34.1%	9.1%	1.00
Glutathione S-transferase theta I	GSTTI	Deletion (*)	86.0%	0.0%	14.0%	N/A
Interleukin 6	IL6	-174G>C	66.7%	33.3%	0.0%	0.37
		-634G>C	86.0%	14.0%	0.0%	0.89
Lipoprotein lipase	LPL	1595C>G	69.8%	27.9%	2.3%	1.00
S-methyltetrahydrofolate- homocysteine methyltransferase reductase	MTRR	66A>G	19.0%	45.2%	35.7%	0.90
5,10-methylenetetrahydrofolate reductase	MTHER	1298A>C	34.0%	48.9%	17.0%	1.00
		677 C>T	48.0%	44.0%	8.0%	0.95
5-methyltetrahydrofolate- homocysteine methyltransferase	MTR	2756A>G	59.5%	33.3%	7.1%	0.86
Nitric oxide synthase 3 (endothelial cell)	NOS3	894G>T	44.2%	44.2%	11.6%	1.00
Peroxisome proliferator-activated receptor gamma	PPARG	Pro I 2Ala	75.6%	15.6%	8.9%	0.02
Superoxide dismutase 2, mitochondrial	SOD2	-28C>T	10.0%	54.0%	36.0%	0.57
Superoxide dismutase 3, extracellular	SOD3	760C>G	100.0%	0.0%	0.0%	1.00
Tumor necrosis factor	TNFa	-308G>A	71.1%	24.4%	4.4%	0.72
Vitamin D receptor	VDR	C Tagl T	23.3%	46.5%	30.2%	0.91
		T BsmI C	23.3%	46.5%	30.2%	0.91
		T FokI C	11.6%	58.1%	30.2%	0.41

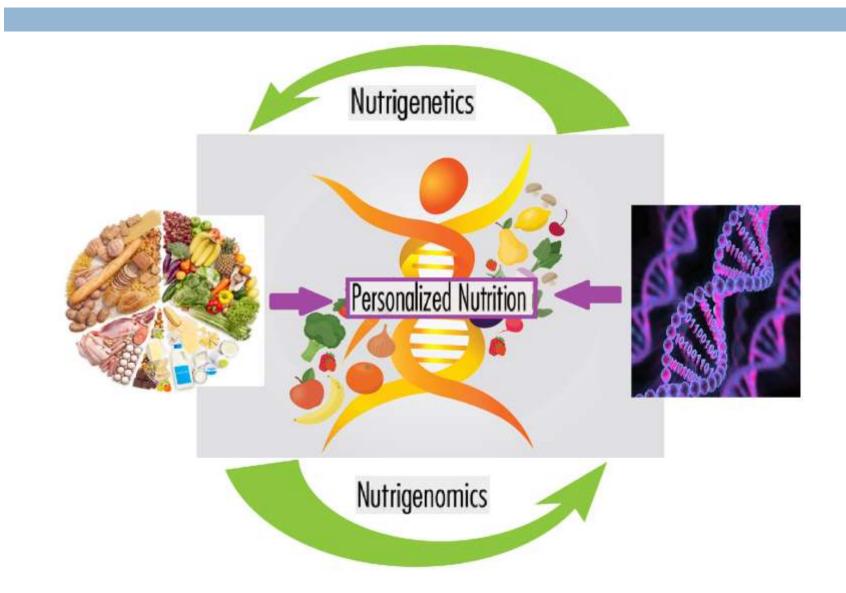
Table 2: Genes and polymorphisms tested in the nutrigenetic patient group.

Genotype frequencies in the study group and p-values for Hardy Weinberg Equilibrium (HWE) are shown. (*) the assay only measured presence or absence of the deletion so a HWE test is not applicable.

Association of polymorphic genes with response to nutrients

- TAS1R2 (Ile191Val)
- Glucose transporter type 2 (Glut-2)
- Tumor necrosis factor-alpha (TNF-α)
- Catechol-O-Methyltransferase enzyme (COMT)
- Apolipoprotein E (APO E)
- APOA1
- ...

End of the second section


Third Section

FUTURE PROSPECTS

Disease Prevention & Health Promotion

Personalized Nutrition

Forth Section What I have learned?

The Forth Section Cont'd.

- Food sends informational signals to the genes.
- > Your genes are not your destiny.
- Food influence ingested behavior.

Food is more than calories, Food is information !

The Forth Section Cont'd.

- What's your definition of nutrigenomics and nutrigenetics?
- How Personalized Nutrition can be helpful in health promotion and disease prevention
- Nutrients and gene expression can lead to epigenetic altering?
- How nutrients can act as informational signals for our body?

Main References:

49

- Malavolta M, Mocchegiani E, editors. Molecular Basis of Nutrition and Aging: A Volume in the Molecular Nutrition Series. Academic Press; 2016 Apr 15.
- Fenech M, El-Sohemy A, Cahill L, Ferguson LR, French TA, Tai ES, Milner J, Koh WP, Xie L, Zucker M, Buckley M. Nutrigenetics and nutrigenomics: viewpoints on the current status and applications in nutrition research and practice. Lifestyle Genomics. 2011;4(2):69-89.
- Ramos-Lopez O, Milagro FI, Allayee H, Chmurzynska A, Choi MS, Curi R, De Caterina R, Ferguson LR, Goni L, Kang JX, Kohlmeier M. Guide for current nutrigenetic, nutrigenomic, and nutriepigenetic approaches for precision nutrition involving the prevention and management of chronic diseases associated with obesity. Lifestyle Genomics. 2017;10(1-2):43-62.
- Cornelis MC, EI-Sohemy A, Kabagambe EK, Campos H. Coffee, CYP1A2 genotype, and risk of myocardial infarction. Jama. 2006 Mar 8;295(10):1135-41.

Thanks For your attention