Lecture 7
Protein-Protein Interaction

Instructor: Teresa Przytycka



Protein-protein interaction network

* Molecular processes are sequences of
events mediated by proteins that act in a
cooperative manner. This cooperation
requires that proteins to interact and form

protein complexes.
* Protein — protein interaction network:

— Nodes — proteins
— Edges - interactions



How do we know that a pair of proteins
interact?

* The two proteins have been crystallized
together.

* High throughput interaction screening methods:
— Yeast two hybrid experiments (Y2H)
— Protein complex purification (PCP)

* Problem with high throughput method:

— significant amount of false positives and false
negatives



Protein-protein interaction

network in yeast (nuclear

proteins)

From
Maslov & Sneppen
Science 2002



Y2H

®
Q Principle of the Two-hybrid system.
(A), (B) Two chimeras, one containing
o the DNA-binding domain (DB: blue
circle) and one that contains an
) activation domain (AD: half blue
DB circle), are co-transfected into an
by appropriate host strain. (C) If the fusion
partners (yellow and red) interact, the
© DB and AD are brought into proximity
and can activate transcription of
=z I reporter genes (here LacZ).

(U ASG)"

From Yeast Two-Hybrid: State of the Art Wim Van Criekinge'* and Rudi

B eya ert?: htp://www.biologicalprocedures.com/bpo/arts/1/16/m16f11g.htm



CPC

Take a set of proteins “baits”

Expose each “bait” protein so to a set of
“pray” proteins that potentially can form
complexes with it.

Allow the complexes to form
|dentify proteins in each complex

Only complexes containing the “bait”
protein are analyzed.



Computational Challenges

* Propose Computational Methods for
detecting PPl and domain interactions

* Analyze such PPI networks
— What properties of these networks tell us about
interactions — any surprising properties?
— Put some confidence measures on such
interaction

— Comparative analysis interaction networks



Computational Methods for
predicting PPI

Phylogenetic Profiles
Rosetta Stone

Gene Neighbors
Co-evolution

Gene clusters

Predicting domain-domain interaction from protein-
protein interaction

« Association method
 Maximum Expectation
« E-value (Eisenberg)



Phylogenetic Profile

Figure form Bowers at al., Genome Biology 2004

(c) > Genome 4

The same profiles

> .
—~ Protein A 1 1 1 0
S Protein B 1 1 1 0
Protein C 1 0 1 1
Protein D 1 1 0 1

« |dea: Pairs of non-homologous proteins that are always both present
or both absent in a genome suggest their functional dependence -
possible interaction

« Profile of a protein: A vector of 0/1 where each position corresponds to
one genome: 1- protein present 0-protein absent



Finding profile clusters

Grenomes:

Pioneered by:
Pellegirni, Marcotte, Thompson,

| B

Eisenberg, Yeates PNAS 1999 | .
(see also earlier paper by Huynen, S ceravisias 8C /7 0 ps 7
Bork PNAS 1998) l ”‘ P2 pe pe ps ) B subtilis (BS)

E. eoli  {EC) H. influenzae (HT)
Demonstrated that | | Profile Clust
. . i rolile usters:
Proteins with same or hd |
similar evolutionary profiles Phylogenetic Profile: | |
1 EC SC  BS HI P2 1 10
are strongly functionally L P 1 1o
linked nooo
3 L B [P 10 1w L1
P4 1 {l L]
P3 R [ o1
Fa 1] 1 1 Df. 0 1 1
F7? | 1 ]
I

Conclusion: P2 and P7 are functionally linked |
F3 and P& are functionally linked




Gene Cluster Method

Within bacteria, proteins of closely related function are often
transcribed from a single functional unit known as an operon.
Operons contain two or more closely spaced genes located on
the same DNA strand. These genes are often in proximity to a
transcriptional promoter that regulates operon expression.

Advantage: Each operon is informative (multiple genome comparison is not
necessary)
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Gene Neighbors

Figure form Bowers et al, Genome Biology 2004
@) 0 ©
c e @
Genome 4
A)
© @ ®

 Gene A is a neighbor of B in several
genomes - potential functional link
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Rosetta Stone

(b)

Figure form Bowers, Genome Biology 2004

Query protein

AB

Linked protein

A, B — two domains that

Rosetta protein

Rosetta protein — protein containing both domains in some

organism — indication that in anther organism these two domains
(which now are in different proteins) may interact
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SCIEMCE VOL 285 30 JULY 1999

Detecting Protein Function and
Protein-Protein Interactions
from Genome Sequences

Edward M. Marcotte, Matteo Pellegrini, Ho-Leung Ng,
Danny W. Rice, Todd O. Yeates, David Eisenberg™

A computational method is proposed for inferring protein interactions from
genome sequences on the basis of the observation that some pairs of interacting
proteins have homologs in another organism fused into a single protein chain.
Searching sequences from many genomes revealed 6809 such putative protein-
protein interactions in Escherichia coli and 45,502 in yeast. Many members of
these pairs were confirmed as functionally related; computational filtering
further enriches for interactions. Some proteins have links to several other
proteins; these coupled links appear to represent functional interactions such
as complexes or pathways. Experimentally confirmed interacting pairs are
documented in a Database of Interacting Proteins.
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Fig. 1. Five examples
of pairs of E. coli pro-
teins predicted to inter-
act by the domain fu-
sion analysis. Each pro-
tein is shown schemat-
ically with boxes rep-
resenting domains [as
defined in the ProDom
domain database (77)].
For each example, a
triplet of proteins is pic-
tured: The second and
third proteins are pre-
dicted to interact be-
cause their homologs
are fused in the first

Yeast Topoisomerass || - EH e

E. coli gyrase B  — — T G

E. coli gyrase A o
Human succinyl CoA-transferase ~

E. coli acetate Co-A transferase «

E. coli acetate Co-A transferase p

B. subtilis DNA pol Ill ¢t
E. coli DNA pol Il o
E. cali DNA pal lll £

Yoast histidine biosynthesis HIS2
E. coli histidine biosynthesis HIS2
E. coli histidine biosynthesis HIS10 1 r

Human &-1-pyrroline-5-carboxylate synthetase
E. coli v-glutamyl phosphate reductase
E. coli glutamate-5-kinase

protein (called the Rosetta Stone protein in the text). The first three predictions are known to interact
from experiments (78). The final two examples show pairs of proteins from the same pathway (two
nonsequential enzymes from the histidine biosynthesis pathway and the first two steps of the proline
biosynthesis pathway) that are not known to interact directly.

15



Fig. 2. Reconstruction of two
metabolic pathways in E. coli,
with only interactions predicted
by the domain fusion method.
Pathways A and C are the known
pathways for biosynthesis of
shikimate and purine, respective-
ly; they are ordered by the tra-
ditional method of successive
action of the enzymes on the
known metabolites. Pathways B
and D are constructed from the
proteins in pathways A and C
with connections predicted by
the domain fusion methed. In
both cases, more than half of the
proteins in the biochemical path-
way are predicted by the domain
fusion method to interact with
other proteins of the pathway. It
is possible that these groupings

AroH
AroF
AroG

AroB
AroD
ArocE

Arok
AroL

AroA

Arol

®

YDIBE ___ AroK
AroE

<

AroA — ArcB

| Pur2—__ Purl

Pu|rE — Pu|r3

Pur5
Purk |
PurT

Guah GuaB PurB PurB

C)

\ +

GuaA ~=— PurH—= PurA

represent multiprotein complexes. Enzymes stacked together (for example, AroK and Arol) are

homologs.



Co-evolution method

» |dea: Assume that protein A and B
interact.

 If A and B are both present in several
organisms and perform the same role in
these organisms they interact in all these

organisms
 Evolution of A and B should be correlated
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Mirror Tree method

» Given two proteins A and B find a set
proteins orthologous to A and orthologous
to B so that both families contain the
proteins for same species

« Construct gene trees of set of A-orthologs
and B-orthologs A B

» Compare the trees [E : : j j

18




Finding orthologs

Similarity of phylogenetic trees as indicator of protein—protein
interaction

Protein Engineering vol.14 no.9 pp.609-614, 2001

_ Florencio Pazos and Alfonso Valencia! general divergence between the corresponding species under

Org 1 v\‘
Org 2 Org 1

MSASs Org 3 93
Org 4
Org 4 Org 5

Org 5

Assumption (not always correct): The best blast hit
from an organism is an ortholog.

Remark: There are other more sophisticated methods
of finding orthologs.
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Comparing the trees

Rather than computing
similarity of two trees
compute correlation
coefficient of the two
distance matrices

Y (Ri=R) (5;-5)

i=1

| n | n
\||Z- {jR,-—RF ,\|| Z {5}—5'}2
i=1 i=1

r=




Results

Distance matrices for families of two interacting proteins are have high correlation

coefficient

F.Pazos and A.Valencia
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Sources of errors and improved
method

Any pair of such “mirror trees” will be correlated
because of common speciation history

We would like to consider only co-evolution that occurs
In addition to Co-'speciation

nl s
22 82
23 $)
Y 54

=5
®s e

ldea: Subtract co-speciation from co-evolution
signal and what is left should be co-evolution due
to common evolutionary pressure for preserving
the functionality of the interacting partners

L




Subtracting Common Speciation

doi:10.101 6/ jmb.2005.07.005 J. Mol Biol. (2005) 352, 1002-1015

MB Available online at www.sciencedirect.com e _é%*;
‘nll"o.@olllo'r' q )

ELSEVIER

Assessing Protein Co-evolution in the Context of the
Tree of Life Assists in the Prediction of the Interactome

Florencio Pazos'*t, Juan A. G. RaneaZ®, David Juan® and
Michael J. E. Sternberg’

ORIGINAL PAPER " i icosmiomimatconiess

Sequence analysis

The inference of protein—protein interactions by co-evolutionary
analysis is improved by excluding the information about the
phylogenetic relationships

Tetsuya Sato+*, Yoshihiro Yamanishi2, Minoru Kanehisa! and Hiroyuki Toh?

Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan,
2Centre de Géostatistique, Ecole des Mines de Paris, 35 rue Saint-Honoré, 77305 Fontainebleau cedex, France
and ®Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka
812-8582, Japan

Received on April 23, 2005; revised on June 23, 2005; accepted on June 28, 2005
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Evolutionary vectors

Given:
Given: Canonic speciation
Distance matrix matrix for
for family F a given set
of species
linearize linearize
Evolutionary vector for F speciation vector
eF - S - CF (Pazos)
— 4
e - oS C: (Sato)

24



Difference between the two methods

A Significant improvement 15-20%
W:‘ C’
F
s I >
S
oS
er ©r
oS = projectonof €p on S
€ - s Cr - as C';
(Pazos)
Will be able to discover (Sato)
Separate completely o5

If two proteins evolve with different speed .
speciation



Using Co-evolution technique for
predicting specific interaction

* Previously we asked the question whether
protein A and B interact, by reducing it to a a
question whether family of orthologs containing
A interact with family of orthologs containing B

 Now we have two families of proteins A and B,
we know that each protein in A has an
interacting partner in B and we try to figure out
which protein from A interact with which protein

form B.

26



Example: Which goes with which?

(A)

C. pneumoniag

0586
(2 n'achamar.g P

Regulators Sensors

dai:10.1016/50022- 2836003 001 141 J Mol Biod (2003) 327, 273-284
M B Available online at www.sciencedirect.com
SCIENCE @mntc‘r-

Exploiting the Co-evolution of Interacting Proteins to
Discover Interaction Specificity

Arun K. Ramani' and Edward M. Marcotte'?" 27



Idea

« Find mapping between

the leaves of the two tree
so that if both distance
matrices (the matrices
used to compute the
trees) are ordered so that
the corresponding leaves
have the same index

And the correlation
coefficient is maximized

The mapping is found by
Monte Carlo Metropolis
algorithm

28



Column swapping method

dait 10.1016/50022-2836(03 001 14-1 J Mol Biod (2003) 327, 273-284
MB Mvailable online at www.sciencedirect.com
SCIENCE @nm:r."r-

Exploiting the Co-evolution of Interacting Proteins to
Discover Interaction Specificity

Vol 19 no. 16 2003, pages 2039-2045
DO 10,1093 bicinformatics/bige78

Inferring protein interactions from phylogenetic

3
mgs distance matrices
it Jason Gertz!, Georgiy Elfond?, Anna Shustrova®, Matt Weisinger®,
‘ ?

Matteo Pellegrini®* Shawn Cokus® and Bruce Rothschild®

Vol 00 no. 00 2005
Fages 1-9

Predicting Protein-Protein Interaction by
Searching Evolutionary Tree AutoMORPHism
Space

Raja Jothi, Maricel G. Kann, Teresa M. Przytycka
(ISMB 2005)



Metropolis Column Swapping
Algorithm

* Move set — select randomly a pair of
column (and corresponding rows)

* Acceptance /rejection test: test if swapping
the columns increase correlation

coefficient.
* Do the swap using Metropolis Criterion.

30



Column Flipping can get you to local

optimum

31



Protein Family A Protein Family B

he 9
E F e
Step 1
a) Contract/shrink one edge at a time on both trees until there f
G (:: are no more edges with bootstrap value < 80%. [:>
H b) If the resulting trees are not isomorphic, shrink/contract mors
edges (but one at a ttime on both trees), in the increasing
order of bootstrap values, until the trees are isomorphic.
A B C o
| Matrix A Matrix B
E F ABCDEFGH cdbahgefo
A ] c
B8 ] Step 2 d
G C Calculate initial b
D ] C:l agreement ED a ]
H = between distance h
F 1] [] matrices g
a B C o G e
H f
Step 2
a) Pick two isomorphic subtrees adjacent to
a common node, and swap their positions
b) Swap the corresponding rows/columns
in the distance matrix
Step 4
lterate until the agreement
with matrix A is maximum bacdhgefof e
b ] f
a []
c
d
h []
g
e
f HENE
v l
E F ABCDEFGH abcdefgh e f
A a
8 Step 5 b
G ¢ O Calculate final c | g
o Cj agreement E> d
H ENE ] between distance el | h
F [ [] matrices f L] []
A B C o © ] 9 O a bec
H ] h [] d

Step B ﬁ

Pradictions: Proteins heading eguivalent
columns in matrices A and B interact



mg protem fanulies
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pe chemokine/receptor—mouse/human [ 100 100 333 333 95 56 39 0.884096 0.887253 0.00
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Predicting domain-domain
interactions from PPl network

* Most proteins contain more than one
domain

* Protein-protein interaction is mediated by
domain-domain interaction for one or more
domain pairs

* High throughput experiments can discover
interaction on protein-protein level. Can
we deduct from it domain-domain
interactions?
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Protein-Protein Interaction from
network alignment

» Given: Interaction networks from three
organisms (yeast, fruit fly, worm)
 |dea: Construct alignment graph:

— Nodes — triples of sequentially similar proteins
(each from one organism)

— Edges — conserved protein interactions
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Association method

doi:10.1006/jmbi.2001.4920 available online at hitp:'www.idealibrary.com on IIH&I"J. Mo, Biol. (2001) 311, 681-692

JMB

Correlated Sequence-signatures as Markers of
Protein-Protein Interaction Idea probablhty p(Int(A B)) that domalns A and B

interact is approximated by:

Einat Sprinzak and Hanah Margalit*

Protein A <- Interacting -> Protein B # interacting protein pairs where one
00 AWoOA— contains A and the other B
@~ Wl oo #
— ' @— DPossible protein pairs where one contains

. A and the other B

A 8- W - . . .
Probability that two proteins X,Y interact is
v v 1-probability they don’t itneract =

- v 111 all domain pairs A, B where A in X and B in Y( 1 -Il’lt(Aé]g))



Expectation Maximization

Letter

Inferring Domain-Domain Interactions
From Protein-Protein Interactions

Minghua Deng, Shipra Mehta, Fengzhu Sun,'- Ting Chen'-*

Program In Mdlecular and Computational Biology, Department of Biological Sciences, University of Southern Calfornia,
Los Angeles, California 20089, USA

|dea:

Assume each domain pair has some interaction probability.
Use Expectation Maximization to estimate the probabilities
that maximize the likelihood of the observed protein-protein
iInteraction network.
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Setting

Let D,,. .., D,; denote the M domains, and P,,. . ., P, denote
the N proteins. Let P; denote the protein pair of P; and P, and
D;; denote the domain pair of D; and D,. Let P; be the set of
domain pairs formed by proteins P; and P;. For example, as-
sume that protein P, contains domains {D,, D,, D3} and pro-
tein P, contains domains {D,, D4}. Then P> = {Dy4, Dy, Dq3,
Dy4, Doy, D3yl
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Setting:

Observation ij is 1
(interaction)

PrPy=1)=1.0- || 1=\, (1)
Dy el ’i}
in which A, = Pr(D,,,, =1) denotes the probability that do-
main D,, interacts with domain D,,.

Probability of false positive and false negative
f” = PI(U,-J;Z 0 I Pr'j: 1).

[) b IJI ] llf

Thus, the probability for the observed protein—protein inter-
action is

PI(O,-J;Z 1) {2}
=Pr(O;=1,P;=1)+Pr(0;=1, P;=0)
=Pr(O;=11P;=1)P1(P;=1)

+ Pr(0;=11P;=0)(1 - Pr(P;;=1))
= Pr(P;=1)(1 - fn) + (1 - Pr(P; = 1))fp. 39



The likelihood function, i.e., the probability of the observed
whole proteome interaction data is

L=]]Pr0;=1)"1 - Pr(0;; = 1))~ (3)
where

0. |1 it the interaction of P; and P is observed,
i~ |0 otherwise

The likelihood L is a function of 6 = (\,,,,,, fp, f1). In the fol-
lowing, we fix fp and fn.

Theta is then estimated using Expectation Maximization approach:

 Start with some imitation assumption about lambda
« Compute Expectation of the data given observation

EDY), 1O =0, YK, 1, 8771

* Estimate lambdas 1
mn = N E E{Df-:ﬁ;mkf: o, V K, 1, ')

Frifi J'.'f: ,-4.”].;'3: .‘q”

-lterate last two steps



DPEA-Domain-Pair exclusion

Method

Inferring protein domain interactions from databases of interacting
proteins

Robert Riley*, Christopher Lee®, Chiara Sabatti* and David Eisenberg™

Addresses: "Department of Human Genetics, David Geffen Schoal of Madicine at UCLA, University of California Los Angeles, Los Angeles, CA
0005, USA 'Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA googs, USA. *Howard Hughes
Medical Institute, University of California Los Angeles, Los Angeles, CA Qo0g5-1570, USA

Correspondence: David Eisenberg. E-mail: david@mbi.ucla.edu

Publzhed: 19 Sepcomber 2005 Recotend: |15 April 2005

Problems with association and EM methods:

Many domain-domain interactions are highly specific; that

is the same domain pair may interact in one context but
not in anther.
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Difficult examples for Association

and EM but not for DPEA

(a)
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ldea behind DPEA method

For every potential domain-domain
interaction run the expectation
maximization approach for under
assumption that the given domain-domain
interaction can occur and under the
assumption that it cannot. If the
expectation drops significantly, it means
that given domain-domain interaction was
necessary in explaining the network.,
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(a)
Hypothetical protein-protein interaction data

feast Worm Human

.r 0 " e
<l -

-
.-r*"'

(b) () (d)
Ciompute fraction of interacting Esfimate propensity of
protein pairs with domains ¢ interaction of domains
and J relative to frequency of iand j iy EM
domains i and j in data

Exclude interaction of domains
1and §; rerun EM and evaluats
chamge in likelfhood

B  — =
B E =
- | .

o o

High-scaring

Lonw-scoring




Comparing Protein Interaction
Networks

Conserved patterns of protein interaction
in multiple species

Roded Sharan**, Silpa Suthram?*, Ryan M. Kelley®, Tanja Kuhn?, Scott McCuine*, Peter Uetz%, Taylor Sittler?,
Richard M. Karp*7, and Trey Ideker*®

*Computer Science Division, University of California, and International Computer Science Institute, 1947 Center Street, Berkeley, CA 94704; *Department of
Bioengineering, University of California at San Diego, 9500 Gilman Drive, La lolla, CA 92093; and Slnstitute of Genetics, Research Center Karlsruhe,
Postfach 3640, D-T6021 Karlsruhe, Germary

Contributed by Richard M. Karp, December 22, 2004

To elucidate cellular machinery on a global scale, we performed a
multiple comparison of the recently available protein-protein
interaction networks of Caenorhabditis elegans, Drosophila mela-
nogaster, and Saccharomyces cerevisiae. This comparison inte-
grated protein interaction and sequence information to reveal 71
network regions that were conserved across all three species and
many exclusive to the metazoans. We used this conservation, and
found statistically significant support for 4,645 previously unde-
scribed protein functions and 2,609 previously undescribed protein
interactions. We tested 60 interaction predictions for yeast by
two-hybrid analysis, confirming approximately half of these. Sig-
nificantly, many of the predicted functions and interactions would
not have been identified from sequence similarity alone, demon-
strating that network comparisons provide essential biological
information beyond what is gleaned from the genome.
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Fig. 1. Schematic of the multiple retwork comparison pipeline. Baw data are preprocessad to estimate the reliability of the available protein interactions and
ideritify groups of ssquencesimilar proteins. A protein group contains one protein from each species and requires that each protein has a significant sequence
match to at least one other protein in the group (euast Evalue < 1077 considering the 10 best matches only). Mext, protein networks are combined to produce
a network alignment that connects protein similarity groups whenever the two proteins within each species directly interact or are connected by a commoaon
netesork neighbor. Conserved paths and clusters identified within the network alignment are compared to thoss computed from randomized data, and thoss
at a significance level of P 0L01 are retained. A final fikering step removes paths and clusters with =80% overlap.
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Example of an alignment

C Ras-mediated regulation of cell cycle

@ 3
T @@ AC7.2
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6'525 F2884.2 85
(as1) (ras2)

Prediction of interaction:
based on sequence similarity
occurrence within the same conserved cluster
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