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Interactome InSIdER: a structural interactome 
browser for genomic studies
Michael J Meyer1–3,6, Juan Felipe Beltrán1,2,6, Siqi Liang1,2,6, Robert Fragoza2,4, Aaron Rumack1,2, Jin Liang2, 
Xiaomu Wei1,5 & Haiyuan Yu1,2  

We present Interactome InSIdER, a tool to link genomic  
variant information with structural protein–protein 
interactomes. Underlying this tool is the application  
of machine learning to predict protein interaction interfaces 
for 185,957 protein interactions with previously unresolved 
interfaces in human and seven model organisms, including  
the entire experimentally determined human binary 
interactome. Predicted interfaces exhibit functional 
properties similar to those of known interfaces, including 
enrichment for disease mutations and recurrent cancer 
mutations. through 2,164 de novo mutagenesis experiments, 
we show that mutations of predicted and known interface 
residues disrupt interactions at a similar rate and much more 
frequently than mutations outside of predicted interfaces. 
to spur functional genomic studies, Interactome InSIdER 
(http://interactomeinsider.yulab.org) enables users to 
identify whether variants or disease mutations are enriched 
in known and predicted interaction interfaces at various 
resolutions. Users may explore known population variants, 
disease mutations, and somatic cancer mutations, or they may 
upload their own set of mutations for this purpose.
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been demonstrated that mutations tend to localize to interaction  
interfaces, and mutations on the same protein may cause clini-
cally distinct diseases by disrupting interactions with different 
partners6,8. However, the binding topologies of interacting pro-
teins can only be determined at atomic resolution through X-ray 
crystallography, NMR, and (more recently) cryo-EM9 experi-
ments, which limits the number of interactions with resolved 
interaction interfaces.

To study protein function on a genomic scale, especially as it relates 
to human disease, a large-scale set of protein interaction interfaces 
is needed. Thus far, computational methods such as docking10 and 
homology modeling11 have been employed to predict the atomic-
level bound conformations of interactions whose experimental 
structures have not yet been determined. However, docked models 
are not yet available on a large scale; and while homology modeling 
has been used to produce models at scale12, it is only amenable to 
interactions with structural templates (<5% of known interactions). 
Together, cocrystal structures and homology models comprise the 
currently available precalculated sources of structural interactomes, 
covering only ~6% of all known interactions (Fig. 1a,b).

Here, we present Interactome INSIDER (integrated structural 
interactome and genomic data browser), a tool for functional 
exploration of human disease on a genomic scale (http://inter-
actomeinsider.yulab.org). Interactome INSIDER is based on a 
structurally resolved, proteome-wide human interactome. We 
assembled this resource by building an interactome-wide set of 
protein interaction interfaces at the highest resolution possible 
for each interaction. We compiled structural interactomes by 
calculating interfaces in experimental cocrystal structures and 
homology models, when available. For the remaining ~94% of 
interactions, we applied a machine-learning framework to predict 
partner-specific interfaces by applying recent advances in coevo-
lution- and docking-based feature construction13,14. Interactome 
INSIDER combines predicted interaction interfaces for 185,957 
previously unresolved interactions (including the full human 

Protein–protein interactions facilitate much of known cellular 
function. Recent efforts to experimentally determine protein 
interactomes in human1 and model organisms2–4, in addition to 
literature curation of small-scale interaction assays5, have dramat-
ically increased the scale of known interactome networks. Studies 
of these interactomes have allowed researchers to elucidate how 
modes of evolution affect the functional fates of paralogs4 and 
to examine, on a genomic scale, network interconnectivities that 
determine cellular functions and disease states6.

While simply knowing which proteins interact with each other 
provides valuable information to spur functional studies, far more 
specific hypotheses can be tested if the spatial contacts of inter-
acting proteins are known7. In the study of human disease, it has 
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interactome and seven commonly studied model organisms) with 
disease mutations and functional annotations in an interactive 
toolbox designed to spur functional genomics research. It allows 
users to find enrichment of disease mutations at different scales: 
in protein interaction domains, in residues, and through atomic 
3D clustering in protein interfaces.

RESULtS
To build Interactome INSIDER, we first constructed an inter-
actome-wide set of protein interaction interfaces. While there 
are well-established methods for predicting whether two pro-
teins interact15,16, we focused on interactions that have been 
experimentally determined, but whose interfaces are unknown 
(Supplementary Note 1). For this task, there is a rich literature 
exploring the potential of many structural, evolutionary, and 
docking-based methods to predict protein interaction interfaces. 
However, so far none of these methods have been used to produce 
a whole-interactome data set of protein interaction interfaces 
(Supplementary Note 2).

We used ECLAIR (ensemble classifier learning algorithm to 
predict interface residues), a unified machine-learning frame-
work, to predict the interfaces of protein interactions. ECLAIR 
leverages several complementary and proven classification 
features, including sequence-based biophysical features, struc-
tural features, and recently proposed features for predicting 
binding partner-specific interfaces, including coevolution-
ary17,18 and docking-based metrics14 (Supplementary Note 3; 
Supplementary Figs. 1 and 2). Unfortunately, many protein–pro-
tein interactions have missing features (especially structural fea-
tures). In fact, this type of nonrandom missing-feature problem 
is present in many biological prediction studies and cannot be 
adequately resolved by commonly used imputation methods. To 
address this issue, ECLAIR is structured as an ensemble of eight 
independent classifiers, each of which covers a common case of 
feature availability. This unique structure of ECLAIR enables it 
to be applied to any interaction while using the most informative 
subset of available features for that interaction (Supplementary 
Notes 4 and 5; Supplementary Figs. 3 and 4).

We comprehensively optimized hyperparameters for ECLAIR 
using a recently published Bayesian method, the tree-structured  
Parzen estimator approach (TPE)19, which allowed us to simulta-
neously tune up to eight hyperparameters for each subclassifier. 
We trained and tested each ECLAIR subclassifier using a set of 
known protein interaction interfaces, and we observed that inter-
faces can be predicted by the single, top-performing subclassifier 
available for each residue. Subclassifier performance increases with 
the number of features used. We observe an area under the ROC 
curve (AUROC) of 0.64 for our top-sequence-only subclassifier and 
AUROC of 0.80 for our top subclassifier using both sequence and 
structural features. In total, we used ECLAIR to predict the inter-
faces of 185,957 interactions with previously unknown interfaces, 
including for 115,576 human interactions (Supplementary Fig. 5). 
Specifically, residues classified by ECLAIR with a high or very high 
interface potential have a precision of 0.69, and >90% of all 115,576 
human interactions with predicted interfaces in Interactome 
INSIDER have one or more residues that fall into these categories. 
We supplemented known structural interfaces from cocrystalized 
proteins and homology models with our predictions to create struc-
tural interactomes at both the atomic and residue levels (Fig. 2a) in 

seven model organisms and human (including all 122,647 human 
experimentally determined binary interactions reported in major 
databases; see Online Methods).

Comprehensive evaluation of predicted interfaces
We established that our predictions are of high quality through 
both machine learning and biological evaluation. We first 
evaluated the trade-offs between false-positive rate and true- 
positive rate and between precision and recall for each of the eight 
independent subclassifiers that compose ECLAIR. As expected, 
we find that as more informative features are added to subse-
quent classifiers, the areas under the ROC and precision–recall 
curves increase, and this justifies the use of classifiers trained 
on more features for residues where this information is available 
(Supplementary Fig. 6).

We next compared ECLAIR with several other prediction 
methods through two independent validations. First, we used 
several readily available predictors20–24 to predict interfaces for 
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Figure 1 | The current size of structural interactomes. (a) The plot shows 
the coverage (number of protein interactions) of known high-quality  
binary interactomes with precomputed cocomplexed protein structures.  
(b) The number of interactions from the eight largest interactomes with 
experimentally solved structures.
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interactions in our testing set. We found that for the set of inter-
actions for which all classifiers can predict, ECLAIR performs 
as well or slightly better than these methods by measures of pre-
cision, recall, true-positive rate and false-positive rate (Fig. 2b  
and Supplementary Fig. 7). Finally, we applied ECLAIR to a 
standard external benchmark set of protein interaction inter-
faces25 which has been used to evaluate the performance of ten 
other interface prediction methods26. We found that ECLAIR 
outperforms all benchmarked methods in accuracy and is com-
parable to the top performers in all other metrics (Supplementary  
Table 1). Furthermore, ECLAIR is applicable to any interaction, 
while methods in this benchmark rely on single-protein-structure 
inputs, which makes them much less applicable to genome-wide 
studies. In fact, 86.1% of interactions without structural features 
contain at least one predicted interface residue at an ECLAIR score 
corresponding to a precision ≥0.6.

We also performed >2,000 mutagenesis experiments to measure 
the rate at which population variants in our predicted interfaces 
disrupt interactions in comparison to variants within known coc-
rystal interfaces and noninterfaces (see Online Methods). Using 
our high-throughput yeast-two-hybrid assay27, we found that 
mutations in our predicted interfaces break their correspond-
ing interactions at a significantly higher rate than those known 
to be away from the interface (P < 0.035) and at similar rates to 
mutations in known interfaces. Since it is known that mutations 
at protein interfaces are more likely to break interactions6,27, our 
experimental results indicate that there is rich functional signal 
in our ECLAIR predictions (Fig. 2c).

Functional annotation of disease mutations in structural 
interactomes
Interactome INSIDER is a tool for identifying functionally 
enriched areas of protein interactomes and for browsing our 
multiscale structural interactome networks—198,503 protein 
interactions whose interfaces have been either experimentally 

determined, homology modeled, or predicted using ECLAIR. 
Interactome INSIDER also includes 56,159 disease mutations 
from HGMD28 and ClinVar29 and 1,300,352 somatic cancer 
mutations from COSMIC30 with their per-disease, precalculated 
enrichment in protein interaction interfaces at the residue level, 
domain level, and through atomic clustering. The site includes 
information on >600,000 population variants from the Exome 
Sequencing Project31, 1000 Genomes Project32, and more33 (see 
Online Methods). Users can search Interactome INSIDER by 
protein to retrieve all interaction partners and their interfaces, 
or they can search by disease to retrieve all interaction interfaces 
that are enriched for mutations of that disease. Additionally, users 
can upload their own set of mutations to find how they are dis-
tributed in the interactome and whether they are enriched in any 
protein interaction interfaces at the residue, domain, and atomic 
levels (Fig. 3).

We demonstrate the utility of Interactome INSIDER and the 
validity of its underlying database by investigating the functional 
and biological properties of our predicted interaction interfaces. 
We measured functional properties of our in silico predicted inter-
faces (those without prior experimental evidence) and compared 
these measurements to those of known interfaces from cocrystal 
structures. We found that disease mutations preferentially occur 
in our predicted interfaces at similar rates to those of known inter-
face residues in PDB cocrystal structures (Fig. 4a), which indi-
cates the viability of using predicted interfaces to study molecular 
disease mechanisms. Furthermore, each higher confidence bin of 
predicted interface residues is more likely to contain disease muta-
tions than the previous, which shows that ECLAIR prediction  
scores are correlated with true protein function. We looked at 
the locations of somatic cancer mutations from COSMIC in our 
interface-resolved human interactome. We specifically focused 
on recurrent cancer mutations, as these are known to be more 
likely to be functional drivers34,35. We found a marked enrich-
ment of recurrent cancer mutations in our predicted interfaces 
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Figure 2 | ECLAIR prediction results. (a) Workflow for classifying interfaces for all interactions in eight species. Interactions without experimentally 
determined or homology-modeled interfaces are classified by ECLAIR. (b) ROC and precision–recall curves comparing ECLAIR with the indicated interface 
residue prediction methods. (c) Fraction of interactions disrupted by the introduction of random population variants in known and predicted interfaces. 
(Significance determined by two-sided Z-test; n.s., not significant.)
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compared to outside these interfaces (Fig. 4b). The same trend 
is observed inside and outside of known interfaces from cocrys-
tal structures, which suggests that the functional links between 
cancer and the potential disruption of protein interactions can be 
observed within the entire Interactome INSIDER human interface 
data set. We also looked at the distribution of population variants 
and show that their placement in and out of predicted interfaces 
matches that of known interfaces, with rarer mutations show-
ing an enrichment in protein interfaces (Fig. 4c). Furthermore, 
population variants in our predicted interfaces are more likely 
to be damaging to protein function than variants outside of pre-
dicted interfaces, as predicted by PolyPhen-2 (ref. 36) (Fig. 4d) 
and EVmutation37 (Fig. 4e), matching the established trend for 
experimentally determined interfaces38. We validated many of 
these biological trends for interactions lacking structural features 
(Supplementary Figs. 8–10 and Supplementary Note 6), and this 
suggests the utility of Interactome INSIDER even in feature-poor 
interactions and across different resolution scales.

We used Interactome INSIDER to search for subnetworks in the 
human interactome that are enriched for mutations associated with 
a single disease by calculating the enrichment of disease muta-
tions in interaction interfaces interactome wide. This identified the 
TGF-β/BMP signaling pathway, which is known to be involved in 
juvenile polyposis syndrome (JPS)39 and contains multiple proteins 
harboring JPS mutations (Fig. 5a). We focused on a specific group 
of mutations in the SMAD4–SMAD8 interface, which can be found 
using 3D atomic clustering. Using our mutagenesis Y2H assay, we 
were able to test a JPS mutation (SMAD4 Y353S)40, which is at the 

interface of SMAD4–SMAD8, and show that it breaks this inter-
action, implicating SMAD8 in JPS (Fig. 5a and Supplementary 
Fig. 11). Although SMAD8 (also known as SMAD9) has not been 
reported to harbor JPS mutations in HGMD28, its involvement 
in the disease has been suggested41, and this shows the ability of 
Interactome INSIDER to implicate new proteins in disease. Y353S 
is not predicted by ECLAIR to be at the interface of SMAD4 and 
another of its binding partners, RASSF5. Indeed, through our Y2H 
experiment, Y353S does not break this interaction, demonstrating 
the functional insight Interactome INSIDER can provide about 
differential interfaces and how they might be relevant to under-
standing the molecular mechanisms of disease.

disease etiology revealed by partner-specific interfaces
Interactome INSIDER enables interrogation of different inter-
faces for the same protein, dependent upon its binding partner  
(Fig. 5b). For the study of protein function and disease, this is 
especially important, as a protein may maintain different func-
tional pathways through different interfaces, and disruption of 
one interface may leave others intact4,8. To test this on a large scale, 
we looked at pairs of disease mutations in the human interactome 
that appear at interaction interfaces, as predicted by ECLAIR. 
Similar to previous reports8, we observed that mutation pairs in 
the interface of two interacting proteins are much more likely 
to cause the same disease than mutation pairs in other interfaces 
of the same proteins that do not mediate the given interaction  
(Fig. 5c). We also find that mutation pairs on the same protein, but 
in separate interfaces with different binding partners, tend to cause 
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different diseases (Fig. 5d). This trend is observed in both known and 
predicted interfaces. These results indicate that Interactome INSIDER 
can be used to form functional hypotheses about the specificity of 
mutations to specific interactions and molecular pathways.

We next used Interactome INSIDER to find subnetworks in the 
human interactome enriched for mutations associated with a single 
disease. We uncovered a set of interacting proteins known to har-
bor mutations causal for hypertrophic cardiomyopathy (HCM)42 
and thereby recapitulated the core constituents of a known KEGG 
pathway related to the same disease (Fig. 6). These proteins were 
identified by enrichment of disease mutations in their shared 
interaction interfaces and, in the case of TNNI3–TNNC1, using 
cross-interface atomic clustering of disease mutation positions in 
3D (features available via the Interactome INSDIER website). In 
addition to identifying known members of the HCM pathway, 

Interactome INSIDER also identified several additional proteins, 
including CSRP3, MYOM1, ANKRD, and TCAP, which are not 
part of the known KEGG pathway but carry HCM mutations 
enriched at their respective interaction interfaces with members of 
the pathway. We also identified a protein, TNNT1, which, although 
it contains no HCM mutations of its own, can be implicated in 
HCM through its interactions with the two proteins TPM1 and 
TNNC1, which are enriched for HCM mutations at their inter-
faces with TNNT1. Finally, we note that Interactome INSIDER 
reveals cases of partner-specific interfaces in this pathway. For 
instance, the known HCM pathway protein TTN’s interface with 
ACTA1 is enriched for HCM mutations, and ACTA1 mutations 
are increasingly linked to HCM43. On the other hand, a separate 
interface of ACTA1 with its binding partner dystrophin is enriched 
with mutations causing a distinct disorder, actin myopathy44. This 
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shows how ACTA1 can play roles in two different diseases through 
separate interaction interfaces with TTN and dystrophin and dem-
onstrates Interactome INSIDER’s unique ability to discover such 
cases of differential function mirroring differential interfaces.

dISCUSSIOn
We anticipate Interactome INSIDER will help bridge the divide 
between genomic-scale data sets and structural proteomic analy-
ses. Now that large-scale sequencing data from many contexts are 
readily available, for instance from whole-genome and whole-
exome population variant studies31,45 and cancer studies46,47, 

researchers have become increasingly interested in ways to assess 
the potential functional consequences of variants on a genomic 
scale48,49. Recently, we and others have developed methods to 
predict functional cancer driver mutations by finding hotspots 
of mutations in the structural proteome35,50. With the compre-
hensive map of protein interfaces presented, we can now go a 
step further to predict specific etiologies of cancer and disease 
based on induced biophysical effects51,52 that may break interac-
tions. Because our interface map is partner specific, it can also be 
applied to predict pleiotropic effects, wherein several mutations 
in a single protein may affect different pathways depending upon 
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which binding interfaces are mutated8. This could be the basis 
for designing new therapeutics and for rational drug design to 
selectively target specific protein functional sites53.

We have shown that hyperparameter optimization, which is 
surprisingly lacking in much of the current literature, can drasti-
cally improve the performance of classifiers for biological classifi-
cation studies. The tiered ensemble form of the ECLAIR classifier 
represents a broadly applicable paradigm in practical machine 
learning that could be readily applied to solving other problems 
with large amounts of nonuniformly missing data, which very 
frequently occur in biology on account of study biases.

With future increases to the scale of biological databases from 
which we derive features, we expect that Interactome INSIDER 
will come to encompass even higher confidence predictions for 
many more interactions, thereby becoming increasingly applica-
ble to functional studies. This may also address some limitations 
of structural databases today. For instance, the PDB is depleted 
of disordered proteins54, and it has been shown that disordered 
regions can form interfaces55. Since ECLAIR has not been trained 
on disordered interfaces, it is unlikely to predict new disordered 
interfaces. However, the ensemble classifier structure of ECLAIR 
uniquely positions it to incorporate all newly available evidence 
into interface predictions without sacrificing quality or scale, and 
this ensures a high-quality map of interaction interfaces now and 
in the future. Furthermore, the addition of new variants, espe-
cially cancer mutations and population variants from large-scale 
sequencing studies, will only increase the value of performing 
systems-level explorations with Interactome INSIDER.

mEthOdS
Methods, including statements of data availability and any associ-
ated accession codes and references, are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Interaction data sets. We compiled binary protein interactions 
available for H. sapiens, D. melanogaster, S. cerevisiae, C. elegans, 
A. thaliana, E. coli, S. pombe, and M. musculus from seven pri-
mary interaction databases. These databases include IMEx56 part-
ners DIP57, IntAct58, and MINT59; IMEx observer BioGRID60;  
and additional sources iRefWeb61, HPRD62, and MIPS63. 
Furthermore, iRefWeb combines interaction data from BIND64, 
CORUM65, MPact66, OPHID67, and MPPI68. We filtered these 
interactions using the PSI-MI69 evidence codes of assays that can 
determine experimental binary interactions (Supplementary 
Table 2), as these are interactions where proteins are known to 
share a direct-binding interface that we can then predict5. In total, 
we curated 198,503 interactions in these eight species, including 
the full experimentally determined binary interactome in human 
(122,647 interactions) (Supplementary Note 1). Those interac-
tions with known interface residues based on available cocrystal 
structures in the Protein Data Bank (PDB)70 were set aside for 
use in training and testing the classifier. Interactions without 
known interface residues comprise the set for which we make 
predictions.

Testing and training sets for interface residue prediction. For 
those interactions with known cocrystal structures in the PDB, 
we calculate interface residues for their specific binding part-
ners. To identify UniProt protein sequences in the PDB, we use 
SIFTS71, which provides a mapping of PDB-indexed residues 
to UniProt-indexed residues33. For each interaction and repre-
sentative cocrystal structure, interface residues are calculated 
by assessing the change in solvent-accessible surface area of the 
proteins in complex and apart using NACCESS72. Any residue 
that is at the surface of a protein (≥15% exposed surface) and 
whose solvent-accessible surface area (SASA) decreases by ≥1.0 
Å2 in complex is considered to be at the interface. We aggregate 
interface residues across all available structures in the PDB for 
a given interaction, wherein a residue is considered to be at the 
interface of the interaction if it has been calculated to be at the 
interface in one or more cocrystal structures of that interaction 
(all other residues are considered to be away from the inter-
face). In building our final training and testing sets, we only 
consider interactions for which aggregated cocrystal structures 
have combined to cover at least 50% of UniProt residues for both 
interacting proteins.

The training and testing sets each include a random selection 
of 400 interactions with known cocrystal structures, of which 
200 are heterodimers and 200 are homodimers (Supplementary  
Table 3). To ensure an unbiased performance evaluation, we 
disallowed any homologous interactions (i.e., interactions 
whose structures could be used as templates for homology mod-
eling) between the training and testing set. We also disallowed 
repeated proteins between the two sets to avoid simply reporting 
a remembered shared interface between a protein and multiple 
binding partners.

Hyperparameter optimization with TPE. To train our ensemble 
of classifiers that comprise ECLAIR, we used the tree-structured 
Parzen estimator approach (TPE)19, a Bayesian method for opti-
mizing hyperparameters for machine learning algorithms. TPE 
models the probability distribution p(x|y) of hyperparameters 

given evaluated loss from a defined objective function, L(x). We 
selected the following loss function to minimize based on classical 
hyperparameter inputs and residue window sizes:

L w n w n( , ) , ,
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where x is comprised of θ, a set of hyperparameters, and w, a 
set of residue window sizes. The evaluation metric, AUROCn, is 
the area under the roc curve for the nth left-out evaluation fold 
in a three-fold cross-validation scheme. We then used TPE to 
randomly sample an initial uniform distribution of each of our 
hyperparameters and window sizes and evaluate the loss function 
for each random set of inputs. TPE then replaces this initial dis-
tribution with a new distribution built on the results from regions 
of the sampled distribution that minimize L(x):
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where y∗ is a quantile γ of the observed y values so that p(y < y∗) 
= γ. Importantly, y∗ is guaranteed to be greater than the mini-
mum observed loss, so that some points are used to build l(x). 
TPE then chooses candidate hyperparameters to sample as those 
representing the greatest expected improvement, EI, according 
to the expression:
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To maximize EI, the algorithm picks points x with high probabil-
ity under l(x) and low probability under g(x). Each iteration of the 
algorithm returns x*, the next set of hyperparameters to sample, 
with the greatest EI based on previously sampled points.

Training the classifier. The ECLAIR classifier was trained in 
three stages, using a custom wrapper of the scikit-learn73 random 
forest74 classifier to allow for use of TPE to search both algorithm 
hyperparameters and residue window sizes simultaneously. In all 
cross-validations performed, we allowed TPE to search the fol-
lowing hyperparameters, beginning with uniform distributions 
of the indicated ranges: (i) minimum samples per leaf (0–1,000), 
(ii) maximum fraction of features per tree (0–1), and (iii) split 
criterion (entropy or gini diversity index). The number of estima-
tors (decision trees) in each random forest was fixed at either 200 
for training the feature selection classifiers or 500 for training the 
full ensemble. We also allowed TPE to search over residue win-
dow sizes (±0–5 residues for a total window of up to 11 residues, 
centered on the residue of interest). This was achieved by allowing 
extra features for neighboring residues to be included at the time 
of algorithm initialization.

In the first stage of training, cross-validation using TPE was 
performed on classifiers trained using only features from one of 
the five feature categories. The feature or set of features from 
each category with the minimum loss was selected to represent 
that category in building the ensemble classifier (Supplementary 
Table 4). In the second stage, the ensemble classifier was built of 
eight random forest classifiers, each trained on different subsets 
of feature categories, and hyperparameters and window sizes were 
again chosen using cross-validation and TPE (Supplementary 
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Table 5). In the final stage, following performance measurement 
on the testing set, the eight subclassifiers were retrained using the 
full set of 3,447 interactions with at least 50% UniProt residue cov-
erage in the PDB, using the same hyperparameters and window 
sizes found in the previous step.

Evaluating the ensemble. After training and optimizing using 
only the training set, we predicted interface residues in a com-
pletely orthogonal testing set. For each subclassifier of the ensem-
ble, all residues in the testing set that could be predicted (given the 
full set of necessary features or a superset) were ranked accord-
ing to their raw prediction scores to produce ROC and preci-
sion–recall plots.

Benchmarking against other methods. Interfaces for interac-
tions in our testing set were computed using several popular 
interface prediction methods20–24. We compiled a set of repre-
sentative protein structures from the PDB for each protein in 
our testing set, selecting the structure with the highest UniProt 
residue content based on SIFTS and excluding any PDB structures 
of interacting protein pairs from our testing set. We then evalu-
ated the precision, recall, and false positive rate for proteins that 
were able to be classified by all methods. These represent point 
estimates of these metrics for the external methods with binary 
prediction scores.

We also compared ECLAIR with ten popular methods for inter-
face prediction by predicting interfaces in a standard benchmark 
set of protein complexes25 (Supplementary Table 1). Here, we 
followed the experimental procedures laid out by Maheshwari  
et al.26 and excluded complexes in which the receptor is <50 or 
>600 amino acids, where the interface is made up of <20 residues, 
or where multiple interfaces are present.

Predicting new interfaces. We retrained the ensemble using all 
available cocrystal structures, including those from both testing 
and training sets, a standard machine learning practice that makes 
maximum use of labeled data75. Using this fully trained ensem-
ble of classifiers, we predicted interface residues for the remain-
ing 185,957 interactions not resolved by either PDB structures 
or homology models. Subclassifiers were ordered based on the 
number and information content of features used in their train-
ing. Each residue was then predicted by only the top-ranking 
classifier of the ensemble trained on the full set or a subset of 
available features for that residue.

Interface enrichment and three-dimensional atomic clustering. 
Interface domain enrichment, residue enrichment, and 3D 
atomic clustering can be calculated through the Interactome 
INSIDER web interface. For enrichments presented in this 
study, we accessed all disease mutations from the Human Gene 
Mutation Database (HGMD)28 and ClinVar29, recurrent cancer 
mutations appearing ≥6 times in COSMIC30, and population 
variants from the Exome Sequencing Project31 to compute the 
log odds ratio:
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where p1 is the probability of a mutation or variant being at the 
interface, and p2 is the probability of any residue being at the 
interface. We computed the log odds ratio for residues in each of 
the interface prediction potential categories. We also computed 
the log odds ratio for interactions with known interfaces from 
PDB cocrystal structures, defined as all known interface residues 
from NACCESS calculations and all residues in Pfam76 domains 
with ≥5 interface residues. For the disease mutation enrichment 
analysis (Fig. 4a), we used all disease mutations available from 
HGMD, and the following numbers of mutations occurred in 
each category: 10,196 very low; 10,547 low; 2,970 medium; 1,135 
high; and 305 very high. We also computed enrichment of 18,638 
mutations in known interfaces and 17,760 mutations in known 
noninterfaces (from cocrystal structure evidence).

To perform 3D atomic clustering of amino acid loci of inter-
est, we used an established method35 for clustering and empiri-
cal P value calculation and applied it to multiprotein clustering, 
wherein clusters can occur across an interaction interface. Here, 
we perform complete-linkage clustering77 in the shared 3D space 
of both proteins, and iteratively, and randomly rearrange muta-
tions in each protein to produce an empirical null distribution 
of cluster sizes.

Mutagenesis validation experiments. We performed mutagen-
esis experiments in which we introduced random human popula-
tion variants from the Exome Sequencing Project31 into known 
and predicted interfaces. We randomly selected mutations of 
predicted interface residues in each of the top four ECLAIR cat-
egories (low–very high). As positive and negative controls, we also 
selected random mutations of known interface and noninterface 
residues in cocrystal structures in the PDB. The selected muta-
tions were then introduced into the proteins according to our pre-
viously published Clone-seq pipeline27, and their impact (either 
disrupting or maintaining the interaction) was assessed using our 
yeast two-hybrid assay (Supplementary Note 7). In this manner, 
we tested the impact of 2,164 mutations: 1,664 in our predicted 
interfaces and 500 in known interface and noninterface residues 
from cocrystal structures. In Figure 2c, we report the fraction of 
tested interface residue mutations that caused a disruption of the 
given interaction for each of the interface residue bins.

Web server. Interactome INSIDER is deployed as an interac-
tive web server (http://interactomeinsider.yulab.org) containing 
known and predicted interfaces for 198,503 protein interac-
tions in eight species as well as variants and functional annota-
tions mapped relative to the residues in the human proteome. 
For each interaction, the most reliable, high-resolution model 
is presented—i.e., cocrystal structures are always displayed in 
lieu of homology models, and all remaining unresolved interac-
tions are predicted by our ECLAIR classifier. Cocrystal struc-
tures are derived from the PDB, with extraneous chains removed 
for each interaction, and homology models are computed by 
MODELLER11 and downloaded from Interactome3D12. For 
both types of structural model, we computed all residues at the 
interface over all available models and allow users to view any 
model from which a unique interface residue has been calculated. 
For predicted interfaces, a nonredundant set of single-protein 
models are shown when available, with locations of predicted 
interface residues indicated. In total, the resource contains 7,135  
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interactions with cocrystal structures, 5,411 with homology mod-
els, and 185,957 with predicted interfaces.

Interactome INSIDER also includes precalculated enrich-
ment of mutations derived from several sources: 56,159 disease 
mutations from HGMD28 and ClinVar29 and 1,300,352 somatic 
cancer mutations from COSMIC30. It also includes 194,396 
population variants from the 1000 Genomes Project32, 425,115 
from the Exome Sequencing Project31, and 54,165 catalogued 
by UniProt33. Predictions of deleteriousness for all variants and 
any user-submitted variants within the curated interactomes are 
obtained from PolyPhen-2 (ref. 36) and SIFT78, and biophysical 
property change guides (i.e., polar to nonpolar, hydrophobic to 
hydrophilic) are also displayed for convenience. Mutation and 
variant-enrichment analyses can be triggered by the user for 
existing variants or for user-submitted sets within interacting 
protein domains, residues, and 3D clustering using the atomic 
coordinates of structures when available.

Downloads of known and predicted interface residues on a per-
interaction basis are available as plain text and as .bed files that can be 
visualized alongside other genomic landmarks in the UCSC genome 
browser79. Per-protein visualization tracks, with interface residues of 
all interaction partners, are also available on the “Downloads” page, 
along with bulk downloads of interfaces for entire species.

Statistics. Statistical analyses were performed using a two-sided Z 
test or a two-sided Mann–Whitney U test, as indicated in the fig-
ure captions. Exact P values are provided for all compared groups, 
and comparisons with a two-sided P value < 0.05 are considered 
significant, with all others considered not significant (n.s.).

Code availability. Custom code used in this study is freely avail-
able at https://github.com/hyulab/ECLAIR and as Supplementary 
Software.

Life Sciences Reporting Summary. Further information regard-
ing the experimental design may be found in the Life Sciences 
Reporting Summary.

Data availability. Data produced by this study is available for 
browsing and bulk download at http://interactomeinsider.yulab. 
org. Source data for Figures 1, 2, 4 and 5 are available online.
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    Experimental design
1.   Sample size

Describe how sample size was determined. Sample sizes were chosen based on data availability or independent benchmarks.

2.   Data exclusions

Describe any data exclusions. No data were excluded from analyses.

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

N/A -- only bulk experiments performed, with trends derived from many 
individuals.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

Interactions were allocated into groups according to an independent benchmark 
set or availability of machine learning features.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Data blinding present in experimental data collection, up until creation of final 
figures for mutagenesis experiment. Data blinding is used as is typical in machine 
learning, with test-set folds left out during algorithm training.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.
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   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

Custom software was used, and is available for download via github (https://
github.com/hyulab/ECLAIR).

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

There are no restrictions on experimental materials. ORF clones used in yeast two-
hybrid assays are available upon request.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

N/A

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. N/A

b.  Describe the method of cell line authentication used. N/A

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

N/A

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

N/A

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

N/A

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

N/A
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