

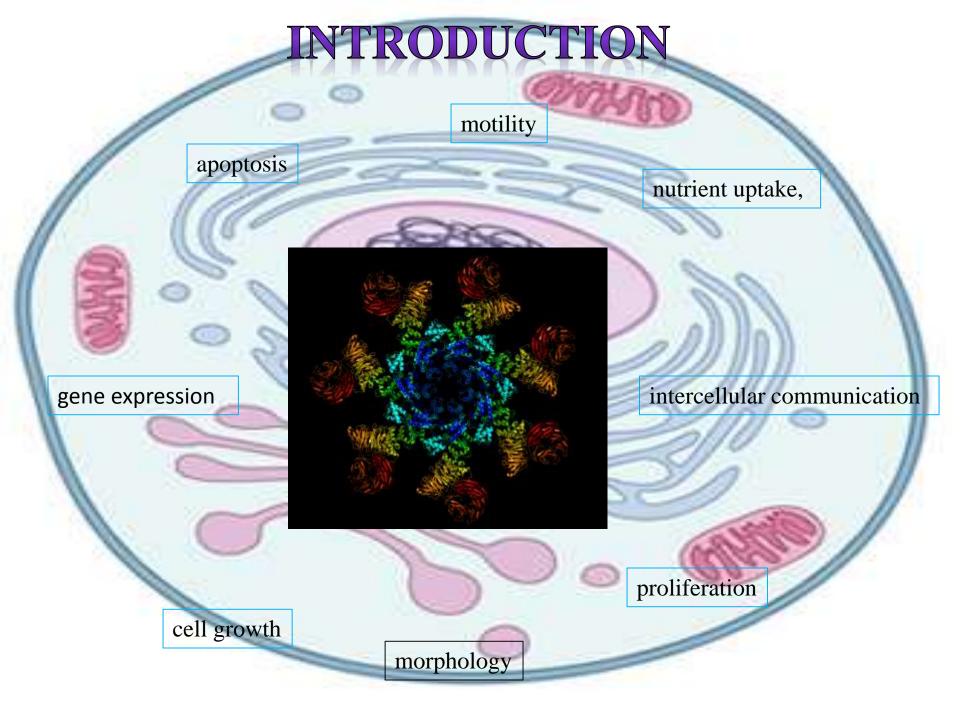

SHRIKANT YANKANCHI Ph.D SCHOLAR IABT, UAS DHARWAD

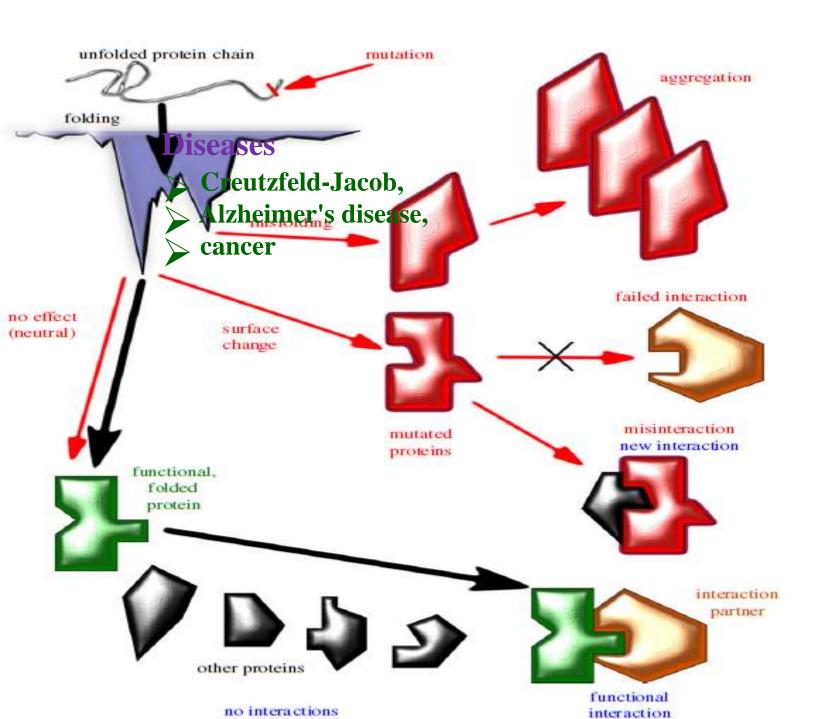
fppt.com

# Contents....

Introduction

**Examples of PPIs** 


**Types of PPIs** 


**Protein domains** 

methods to investigate PPIs

**Protein Interactions Database (PIDs)** 

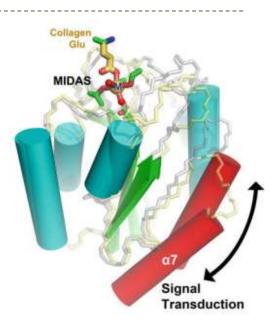
**Applications of PPIs** 





## **DEFINITION**

PPIs refer to intentional physical contacts established between two or more proteins as a result of biochemical events and/or electrostatic forces

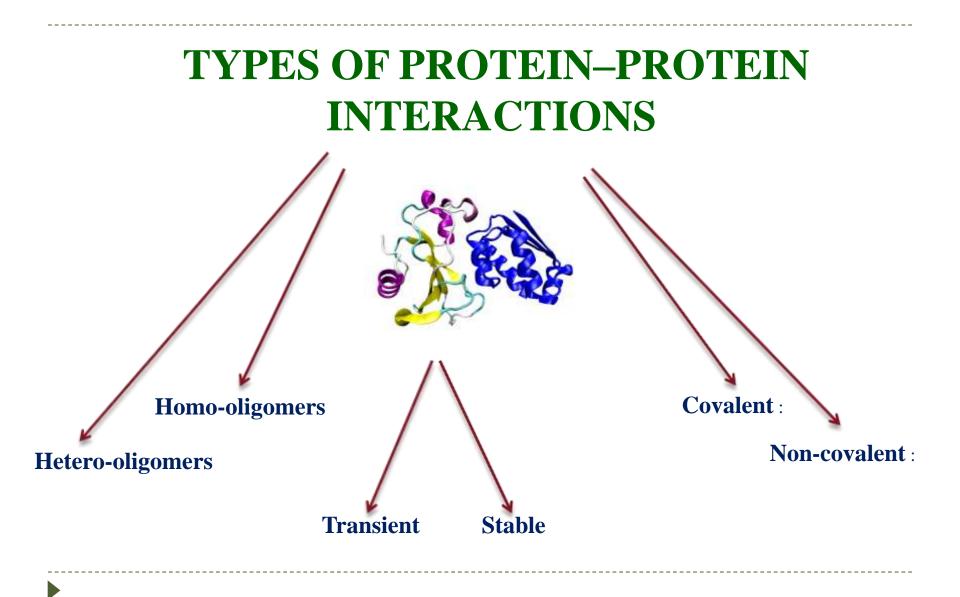

# **Examples of protein–protein interactions**

### **Signal transduction**

The activity of the cell is regulated by extracellular signals

### **Transport across membranes**

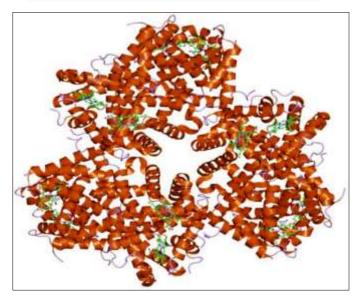
A protein may be carrying another protein.




#### **Cell metabolism**

In many biosynthetic processes enzymes interact with each other to produce small compounds or other macromolecules.

#### **Muscle contraction**


Myosin filaments act as molecular motors and by binding to actin enables filament sliding.

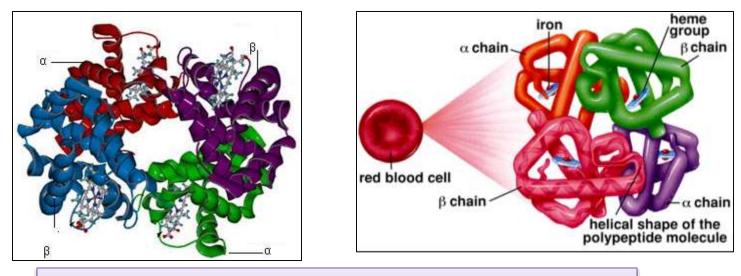


# ON THE BASIS OF THEIR COMPOSITION Homo-oligomers

Homo-oligomers are macromolecular complexes constituted by only one type of protein subunit

Homo-oligomers complex




Protein subunits assembly is guided by the establishment of non-covalent Interactions in the quaternary structure of the protein

E.g.: PPIs in Muscle Contraction

Several enzymes, carrier proteins and transcriptional regulatory factors carry out their functions as homo-oligomers.

## **Hetero-oligomers**

Distinct protein subunits interact in hetero-oligomers, which are essential to control several cellular functions



Hetero-oligomers complex Eg: Hemoglobin Hb or Hgb

Heterologous proteins - cell signaling events

E.g.: PPI between Cytochrome Oxidase and TRPC3 (Transient receptor potential cat ion channels)

# **2. ON THE BASIS OF THEIR BONDING**

## Covalent :

Strongest association - disulphide bonds or electron sharing

- Post translational modifications
- E.g.: ubiquitination and SUMOylation

## Non-covalent :

Established during transient interactions by the combination of weaker bonds

- Hydrogen bonds,
- Ionic interactions,
- Van der waals forces, or
- Hydrophobic bonds

## Ubiquitination

Plays a role in the degradation of defective and superfluous proteins, single-chain polypeptid

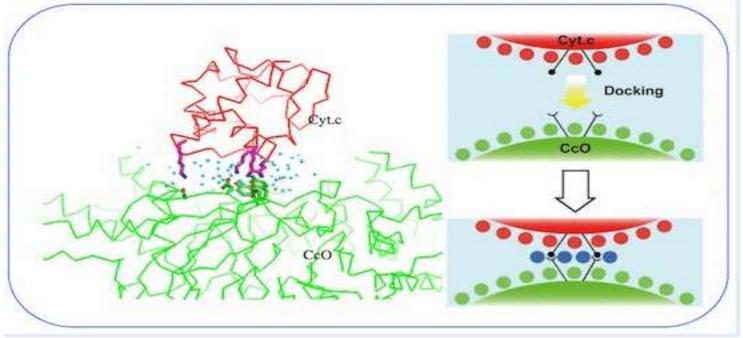
Ubiquitination (or ubiquitylation) is an enzymatic <u>post-</u> <u>translational modification</u> in which a ubiquitin protein is attached to a <u>substrate protein</u>

- Steps: activation, conjugation, and ligation,
- By: ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes (E2s), and ubiquitin ligases (E3s)

## ON THE BASIS OF THEIR DURATION OF INTERACTION

## **Transient Interactions** :

Interactions that last a short period of time reversible manner


E.g.: G protein-coupled receptors only transiently bind to  $G_i/_o$  proteins when they are activated by extracellular ligands

## **Stable Interactions:**

Proteins - interact for a long time, taking part of permanent complexes as subunits -carry out Functional or Structural roles

e.g. Cytochrome c

Eg: Stable Interactions



cytochrome *c* – \*\*C*c*O complex

stabilized by a few electrostatic interactions between long side chains within a small contact surface.

In contrast to other Cyt.c complexes, numerous water molecules are found in the long inter-molecular span between Cyt.c and CcO..

\*\*Cytochrome c oxidase

| PDB<br>code                                                                                                      | Protein                                                                                | Resolution |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------|
| code                                                                                                             |                                                                                        | ~          |
| 1cdt                                                                                                             | Nonhomologous homodimers*<br>Cardiotoxin                                               | 2.5        |
| 1fc1                                                                                                             | Fc fragment (immunoglobulin)                                                           | 2.9        |
| 1118                                                                                                             | Interleukin                                                                            | NMR        |
| 1msb                                                                                                             | Mannose binding protein                                                                | 2.3        |
| 1phh                                                                                                             | <i>p</i> -Hydroxybenzoate hydrolase                                                    | 2.3        |
| 1pp2                                                                                                             | Phospholipase                                                                          | 2.5        |
| 1pyp                                                                                                             | Inorganic pyrophosphatase                                                              | 3.0        |
| 1sdh                                                                                                             | Hemoglobin (clam)                                                                      | 2.4        |
| 1utg                                                                                                             | Uteroglobin                                                                            | 1.35       |
| 1vsg                                                                                                             | Variant surface glycoprotein                                                           | 2.9        |
| 1ypi                                                                                                             | Triose phosphate isomerase                                                             | 1.9        |
| 2ccy                                                                                                             | Cytochrome c3                                                                          | 1.67       |
| 2cts                                                                                                             | Citrate synthase c                                                                     | 2.0        |
| 2gn5                                                                                                             | Gene 5 DNA-binding protein                                                             | 2.3        |
| 2or1                                                                                                             | 434 repressor                                                                          | 2.5        |
| 2rhe                                                                                                             | Bence-Jones protein                                                                    | 1.6        |
| 2rus                                                                                                             | Rubisco                                                                                | 2.3        |
| 2rve                                                                                                             | EcoRV endonuclease                                                                     | 3.0<br>2.0 |
| 2sod                                                                                                             | Superoxide dismutase                                                                   | 2.6        |
| 2ssi                                                                                                             | Subtilisin inhibitor<br>Tyrosyl transferase RNA synthase                               | 2.3        |
| 2ts1<br>2tsc                                                                                                     | Thymidylate synthase                                                                   | 1.97       |
| 2wrp                                                                                                             | Trp repressor                                                                          | 1.65       |
| 3aat                                                                                                             | Aspartate aminotransferase                                                             | 2.8        |
| 3enl                                                                                                             | Enolase                                                                                | 2.25       |
| 3gap                                                                                                             | Catabolite gene activator protein                                                      | 2.5        |
| 3grs                                                                                                             | Glutathione reductase                                                                  | 1.54       |
| 3ied                                                                                                             | Isocitrate dehydrogenase                                                               | 2.5        |
| 3sdp                                                                                                             | Iron superoxidase                                                                      | 2.1        |
| 4mdh                                                                                                             | Cytoplasmic malate dehydrogenase                                                       | 2.5        |
| Sadh                                                                                                             | Alcohol dehydrogenase                                                                  | 2.9        |
| 5hvp                                                                                                             | HIV protease                                                                           | 2.0        |
| and the second | Enzyme-inhibitor complexes <sup>†</sup>                                                |            |
| lach                                                                                                             | α-Chymotrypsin–eglin C                                                                 | 2.0        |
| 1cho                                                                                                             | α-Chymotrypsin–ovomucoid third domain<br>Subtilisin Carlsberg–eglin C                  | 1.8        |
| lcse                                                                                                             | Subtilisin Carlsberg–eglin C                                                           | 1.2        |
| Imct                                                                                                             | Trypsin-inhibitor from bitter gourd                                                    | 1.6        |
| 1mcc                                                                                                             | Peptidyl peptide hydrolase–Eglin C                                                     | 2.0        |
| lstf                                                                                                             | Papain-inhibitor stefin B mutant                                                       | 2.37       |
| ltab                                                                                                             | Trypsin-Bowman-Birk inhibitor                                                          | 2.3        |
| 1tgs                                                                                                             | Trypsinogen–Pancreatic secretory trypsin inhibitor                                     | 1.8        |
| 2ptc<br>2sic                                                                                                     | β-Trypsin–pancreatic trypsin inhibitor<br>Subtilisin–streptomyces subtilisin inhibitor | 1.9        |
| Zaic                                                                                                             | Antibody-antigen complexes <sup>‡</sup>                                                | 1.6        |
| 1fdl                                                                                                             | D1.3 Fab-hen egg white lysozyme                                                        | 2.5        |
| 1jel                                                                                                             | Fab JE142-histidine containing protein                                                 | 2.8        |
| ljhl                                                                                                             | D11.15 Fv-pheasant egg lysozyme                                                        | 2.4        |
| 1nca                                                                                                             | NC41 Fab/influenza virus N9 neuraminidase                                              | 2.5        |
| 2hfl                                                                                                             | HYHEL-5 Fab-chicken-lysozyme                                                           | 2.54       |
| 3hfm                                                                                                             | HYHEL-10 Fab-chicken lysozyme<br>Other heterodimeric complexes <sup>§</sup>            | 3.0        |
| latn                                                                                                             | Deoyribonuclease I-actin                                                               | 2.8        |
| lgln_                                                                                                            | Glycerol kinase–glucose-specific factor III                                            | 2.6        |
| 1hrp¶                                                                                                            | Human chorionic gonadotropin                                                           | 3.0        |
| llpa                                                                                                             | Lipase-colipase                                                                        | 3.04       |
| 1lya"                                                                                                            | Cathepsin D                                                                            | 2.5        |
| 2btf                                                                                                             | β-Actin–profilin                                                                       | 2.55       |
| 2pch                                                                                                             | Yeast cytochrome $c$ peroxidase-horse cytochrome $c$                                   | 2.8        |
| 3hhr <sup>#</sup>                                                                                                | Human growth hormone-human growth hormone receptor                                     | 2.8        |
| Th                                                                                                               |                                                                                        |            |
| 3hvt¶<br>6rlx¶.**                                                                                                | Reverse transcriptase<br>Relaxin                                                       | 2.9        |

Table 1. Data sets of protein-protein complexes

# **Protein Domains**

- Interactions only possible due to structural domains within the proteins
- A protein domain is a conserved part of a given protein sequence and (tertiary) structure that can evolve, function, and exist independently of the rest of the protein chain
- Proteins hold structural domains that allow their interaction with and bind to specific sequences on other proteins

#### 1. phosphotyrosine-containing motifs,

- Examples for protein who carry this motif: activated receptors for growth factors, cytokines and antigens.

- Recognizing protein protein interaction domain:
  - a. SH2 domains
  - b. <u>PTB domains</u>, also binds unphosphorylated peptides

#### 2. phosphoserine/threonine motifs,

- Recognizing protein protein interaction domain:
  - a. <u>14-3-3 proteins</u>
  - b. FHA domains
  - c. <u>WW domains</u>, also binds unphosphorylated peptides,

Proline-rich

d. WD40-repeat domains

#### 3. acetylation of lysine residues

- Proteins who carry the motif: histones
- Recognizing proteins: creates binding sites for the **Bromo domain**

#### 4. methylation of lysine residues

- Proteins who carry the motif: histones
- Recognizing proteins: creates binding sites for the Chromo domains,

## Other protein-protein interaction domains

#### Apoptosis

- **DD** death domain
- **DED** Death Effector Domain

### Chromatin

CSD - Cold-shock domain

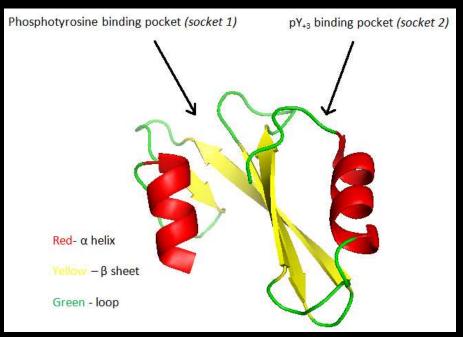
### **Proteolysis**

- **♯** <u>F-box</u>
- Hect homologous to the E6AP <u>carboxyl terminus</u>
- **RING** really interesting new gene

### Dimerization

• <u>SAM</u> - Sterile  $\alpha$  Motif

### **Vessicle Traffic**


- <u>GYF</u>
- <u>Snare</u>
- <u>VHS</u>

## Undefined

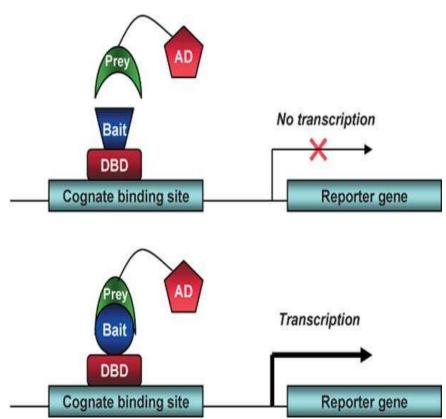
- <u>ANK</u>
- <u>ARM</u>
- <u>WD40</u>
- <u>LIM</u>

### Src homology 2 (SH2) domain

- Role cellular communication
- Structure contains 2 alpha helices and 7 beta strands
- It has a high affinity to phosphorylated tyrosine residues
- It is known to identify a sequence of 3-6 amino acids within a peptide motif
- Represent the largest class of known pTyr-recognition domains.

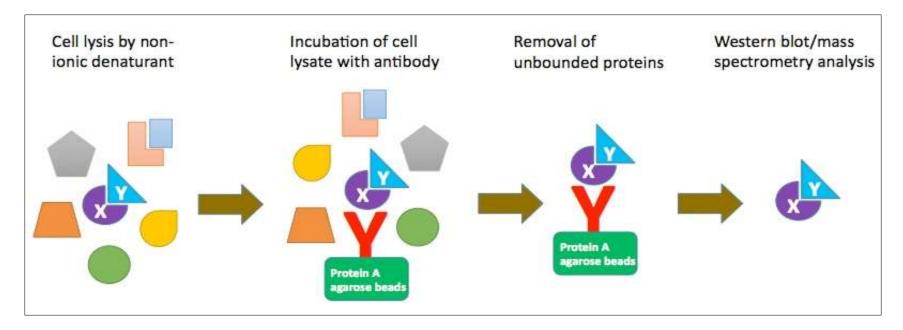


# **PPIs Identification Methods**


| Experimental<br>(In vivo)    | <ul> <li>Yeast two-hybrid system</li> <li>split ubiquitin system</li> <li>split lactamase / split galactosidase system</li> <li>split yellow fluorescent protein (YFP) system</li> </ul> |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Experimental<br>(In vitro)   | <ul> <li>Co-immunoprecipitation</li> <li>Tagged Fusion Proteins</li> <li>X-ray Diffraction</li> <li>Biacore</li> <li>Phage display</li> </ul>                                            |
| Computational<br>(In silico) | <ul> <li>BIND</li> <li>DIP</li> <li>MINT</li> <li>IntAct</li> </ul>                                                                                                                      |

## Methods to Investigate PPIs

- Immuno-precipitation,
- Protein microarrays,
- Analytical ultracentrifugation,
- Light scattering,
- Fluorescence spectroscopy,
- Resonance-energy transfer systems,
- Surface Plasmon resonance, protein-fragment complementation assay, and Calorimetry etc...
- The two most prominent methods used for investigating
   PPIs are: Yeast two-hybrid screening and Affinity
   purification coupled to mass spectrometry
   Xue-Wen Chen and Mei Liu


# Yeast two-hybrid

- Testing for physical interactions between two proteins
- first proven using Saccharomyces cerevisiae as biological model by Fields and Song
- Bait The protein fused to the DBD is referred to as the 'bait' (yeast transcription factor, like Gal4)
- Prey- The protein fused to the AD
- Reporter gene: LacZ reporter -Blue/White Screening



# **Co-immunopercipitation**

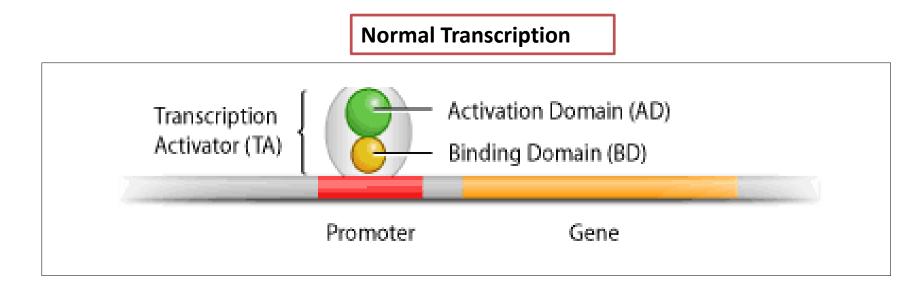
- Co-IP is a classic technology widely used for protein-protein interaction identification and validation
- New binding partners, binding affinities, the kinetics of binding and the function of the target protein



#### **Principle of co-Immunoprecipitation**

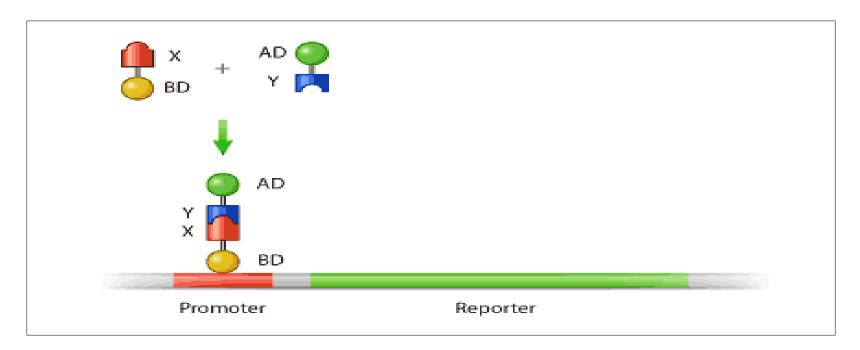
The advantage of this technology includes:

- Both the bait and prey proteins are in their native conformation in the co-IP assay
- The interaction between the bait and prey proteins happens in vivo with little to no external influence


## The limitation of this technology lies in

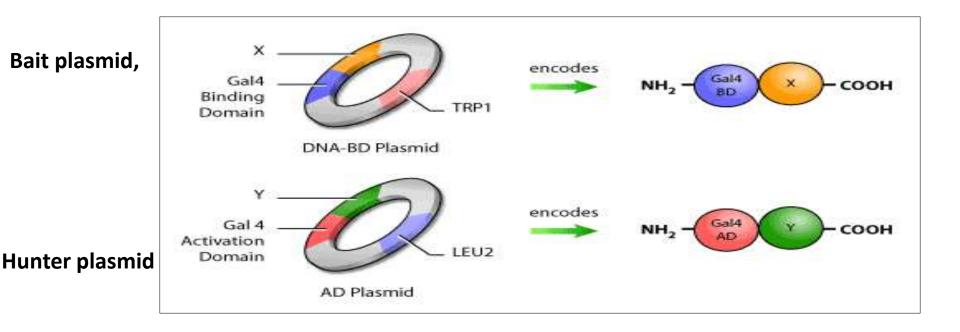
 Low affinity or transient interaction between proteins may not be detected.

# Yeast two-hybrid


Saccharomyces cerevisiae as biological model by Fields and Song

>One technique that can be used to study protein-protein interactions is the "yeast two hybrid" system

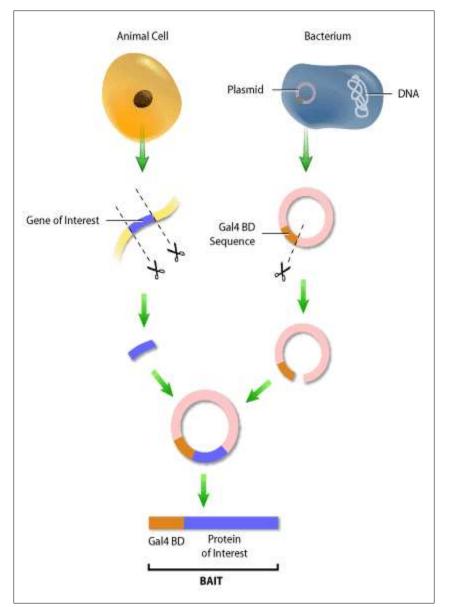



transcription requires both the DNA-binding domain (BD) and the activation domain (AD) of a transcriptional activator (TA)

Basic principle



If protein X and protein Y interact, then their DNA-binding domain and activation domain will combine to form a functional transcriptional activator (TA). The TA will then proceed to transcribe the reporter gene that is paired with its promoter

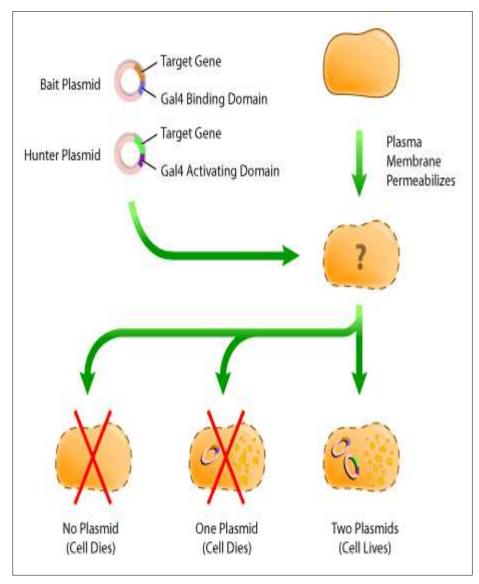

#### The yeast two-hybrid assay uses two plasmid constructs



The bait plasmid, which is the protein of interest fused to a GAL4 binding domain, and the hunter plasmid, which is the potential binding partner fused to a GAL4 activation domain

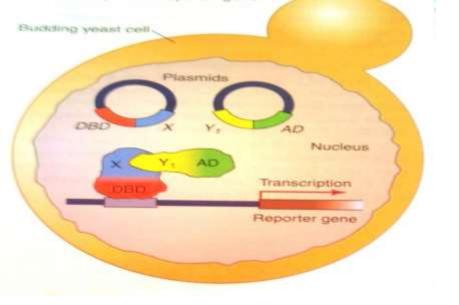
Selection genes encoding for amino acids, such as histidine, leucine and tryptophan

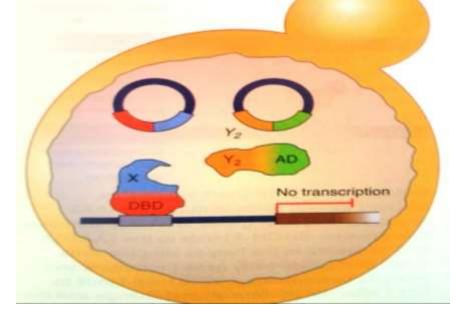
### Plasmid construction




The 'bait' DNA is isolated and inserted into a plasmid adjacent to the GAL4 BD DNA.

➢ When this DNA is transcribed, the 'bait' protein will now contain the GAL4 DNAbinding domain as well. The 'Prey'/ Hunter fusion protein contains the GAL4 AD


### **Transfection :**


The 'bait' and 'hunter' plasmids are introduced into yeast cells by transfection.



cells containing both plasmids are selected for by **growing cells on minimal media**. Only cells containing both plasmids have both genes encoding for missing nutrients, and consequently, are the only cells that will survive.

Solmaz Sobhanifar (2005)





Transcription of reporter gene

No transcription of reporter gene

The reporter gene most commonly used in the Gal4 system is LacZ, an E. coli gene whose transcription causes cells to turn blue4

LacZ gene is inserted in the yeast DNA immediately after the Gal4 promoter

## Applications

- Identify novel protein-protein interactions
- Characterize interactions already known to occur
  - protein domains
  - Conditions of interactions
- manipulating protein-protein interactions in an attempt to
   understand its biological relevance
- To know how mutation affects a protein's interaction with other proteins

# Genome-wide protein-protein interaction networks in different organisms

| Species                          | Genome wide methods                                                  | Interactions                                 | Reference                                          |
|----------------------------------|----------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------|
| Fly (Drosophila melanogaster)    | Screening of 10,623 yeast-two hybrid<br>(Y2H) baits                  | 20,405 interactions<br>(with 7,048 proteins) | Giot et al. 2003                                   |
| Worm (Caenorhabditis elegans)    | Screening of 1,873 Y2H baits                                         | 4,000 interactions                           | Li et al. 2004                                     |
| Human (Homo sapiens)             | Yeast mating of 8,100 ORF<br>(7,200 unique genes)                    | 2,800 interactions                           | Rual et al. 2005                                   |
| Yeast (Saccharomyces cerevisiae) | Affinity purification of 4,562-<br>tagged proteins                   | 7,123 interactions<br>(with 2,708 proteins)  | Krogan et al. 2006                                 |
| Plant (Arabidopsis thaliana)     | Y2H screening of 8,000 ORF<br>(9,000 predicted protein coding genes) | 6,200 interactions<br>(with 2,700 proteins)  | Arabidopsis Interactome<br>Mapping Consortium 2011 |

## List of rice genes used as baits for YTH screening

| Gene class and predicted products <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                              | Number of genes |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Genes involved in plant defense responses/disease<br>resistance<br>Resistance genes (Pi-a, Pto, Mlo, NBS-LRR)<br>Genes involved in defense signal transduction<br>pathways (NPR1, NDR1, LSD1, LLS1, COI1-like,<br>Pti1, MAP kinases, NOS, NOS inhibitors, Pti4/5/6)<br>Genes involved in defense responses (PR proteins,<br>oxidases, peroxidase, GSTs, glucanase, chitinases,<br>lipoxygenases, PAL, proteinase inhibitors,<br>14-3-3 proteins)                                            | 58              |
| Genes involved in other signal transduction pathways<br>Auxin (Nitrilases, IAA-AA hydrolases, IAA)<br>Ethylene (Ein3-like, ERF1)<br>Brassinosteroids (BR11)<br>Light regulation (CRY1, COP9)<br>General signal transduction (G proteins, calmodulins,<br>casein kinases, phophatases, phospholipase,<br>adenyl cyclase)<br>DNA binding proteins [bZIP proteins (TGAs and GBFs),<br>Myb proteins, HMG protein, MADS-box proteins,<br>WD-40 repeat protein, homeodomain proteins (Knox class) | 52              |

# List of interacting proteins found for eight bait proteins

| Baits and interacting proteins <sup>a</sup>                       | Number<br>of hits |
|-------------------------------------------------------------------|-------------------|
| Pti1 (serine/threonine kinase)                                    |                   |
| Protein kinase homolog                                            | 5                 |
| Receptor-like protein kinase homolog                              | 2                 |
| Putative homeodomain transcription factor                         | 3                 |
| Auxin-induced basic helix-loop-helix transcription fac            | tor 1             |
| Abscisic acid and salt stress-responsive protein                  | 1                 |
| Late embryogenesis Lea protein                                    | 1                 |
| Voltage-dependent anion channel protein 2                         | 2                 |
| H(+)-transporting ATPase-like protein                             | 1                 |
| Putative lipase homolog                                           | 1                 |
| Lipid transfer protein                                            | 3                 |
| Indole-3-acetate beta-glucosyltransferase homolog                 | 1                 |
| Subtilisin-like proteinase                                        | 1                 |
| Methanobacterium thermoautotrophicum<br>transcriptional regulator | 4                 |
| Unknown proteins                                                  | 29                |
| Pti4/6 (rls6.pk0076.e6) EREBP proteins                            |                   |
| Jun activation domain binding or Jab1 protein                     | 13                |
| D. melanogaster sno homolog                                       | 1                 |
| Unknown proteins                                                  | 19                |

| Pti5 (rlr24.pk0042.d3) EREBP protein                       |    |
|------------------------------------------------------------|----|
| CONSTANS protein                                           | 2  |
| Glutathione S-transferase (auxin-induced)                  | 18 |
| Inorganic phosphate transporter 1                          | 3  |
| Neoxanthin cleavage enzyme                                 | 3  |
| Lipid transfer protein precursor                           | 1  |
| PCF1                                                       | 1  |
| Uroporphyrinogen decarboxylase                             | 1  |
| Unknown proteins                                           | 91 |
| Calmodulin (rls24.pk0093.f4)                               |    |
| Jab1 protein                                               | 7  |
| 10-kDa chaperonin                                          | 6  |
| 3-hydroxyisobutyryl-coenzyme A hydrolase-like protein      | 1  |
| rNPR1-1 (rr1.pk0001.a11)                                   |    |
| bZIP DNA-binding protein                                   | 4  |
| Acyl carrier protein precursor                             | 78 |
| Proteasome proteins                                        | 8  |
| rNPR1-2 (rl0n.pk0063.d10)                                  |    |
| bZIP DNA-binding protein                                   | 4  |
| Putative serine/threonine-specific receptor protein kinase | 1  |
| Pathogenesis-related protein 1                             | 1  |
| Dehydration-induced protein ERD15                          | 1  |
| Abscisic acid and salt stress-responsive protein (osr40g3) | 1  |
| Senescence-associated protein sen1                         | 1  |

Fang et al., 2002

# **Protein interactions database**

- Protein interactions are collected together in specialized biological databases
- Databases can be subdivided into primary databases,
   meta-databases, and prediction databases
- Primary databases published PPIs proven to exist via small-scale largescale experimental methods. Eg: DIP, Biomolecular Interaction Network, BIND, BioGRID), HPRD
- Meta-database Primary and original data Eg: APID, The Microbial, MPIDB, and PINA, and GPS-Prot etc.
- Prediction Databases predicted using several techniques Eg: Human Protein–Protein Interaction Prediction Database (PIPs), I2D, STRING, and Unified Human Interactive (UniHI).

# BIND

## (Biomolecular Interaction Network Database)

- http://bind.ca
- A free, open-source database for archiving and exchanging molecular assembly information.
- The database contains
  - Interactions
  - Molecular complexes
  - Pathways

## Conclusions

- PPI methodologies have been developed in yeast-methods
   are sometimes not suitable for plant systems
- Proteomic approaches still challenging
- International Plant Proteomics Organization
- (www.inppo.com), global initiative to develop and improve
- connections between plant proteomics researchers and related fields

