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Construction and Analysis of 
Protein-Protein Interaction 
Network of Heroin Use Disorder
Shaw-Ji Chen1,2, Ding-Lieh Liao3, Chia-Hsiang Chen   4, Tse-Yi Wang5 & Kuang-Chi Chen5

Heroin use disorder (HUD) is a complex disease resulting from interactions among genetic and other 
factors (e.g., environmental factors). The mechanism of HUD development remains unknown. Newly 
developed network medicine tools provide a platform for exploring complex diseases at the system 
level. This study proposes that protein–protein interactions (PPIs), particularly those among proteins 
encoded by casual or susceptibility genes, are extremely crucial for HUD development. The giant 
component of our constructed PPI network comprised 111 nodes with 553 edges, including 16 proteins 
with large degree (k) or high betweenness centrality (BC), which were further identified as the backbone 
of the network. JUN with the largest degree was suggested to be central to the PPI network associated 
with HUD. Moreover, PCK1 with the highest BC and MAPK14 with the secondary largest degree and 9th 
highest BC might be involved in the development HUD and other substance diseases.

Heroin was originally synthesized in the late nineteenth century. Abstaining from heroin use is difficult, and it 
leads to a high relapse rate among past users1,2. New heroin users easily become addicted to the drug, tend to have 
serious withdrawal symptoms, and finally develop heroin use disorder (HUD). It has recently become a serious 
problem in South and East Asia3–5, and heroin users have the highest mortality rate among all the users of addic-
tive substances in Taiwan6.

Similar to the other addictive disorders, HUD is a complex disorder resulting from the interplay between the 
environmental factors and the genetic predisposing factors7–10. Studies have suggested that HUD is a polygenic 
disorder and identified various susceptibility genes contributing to HUD through different mechanisms at differ-
ent stages of HUD development8,11,12. However, the pathogenesis remains unclear. Previous studies evaluated the 
genetic influence on HUD rather than gene expression at the protein level. In addition to the genetic influence 
engendered by DNA, all biochemical processes are controlled by proteins. We propose that protein–protein inter-
actions (PPIs), particularly those among proteins encoded by the aforementioned casual or susceptibility genes, 
are essential for HUD development.

In this study, we used the relevant gene biosignatures as the seeds to construct the PPI network associated 
with the development of HUD. The regulatory pathways were explored through topological analysis of the PPI 
network for the further understanding of the HUD mechanism. In a PPI network, nodes represent proteins, and 
edges represent interactions13. According to graph theory, the topological structure of the PPI network provides 
basic and direct information regarding the network and is associated with biological functions14. The combina-
tion of the topological structure of the PPI network with the relevant biological knowledge provides a promising 
tool for understanding the biological mechanisms of species.

Recently, topological analyses have been applied to molecular networks including protein interaction net-
works13–19, gene regulatory networks20–22, and metabolic networks23–26. Connectivity degree (k), betweenness cen-
trality (BC), closeness centrality (CC), eigenvector centrality (EC), and eccentricity are the fundamental measures 
of nodes in network theory27,28. In a PPI network, nodes with large degree, defined as hub proteins, are crucial 
proteins, because they might be corresponding to the disease-causing genes15,29, whereas nodes with high BC, 
defined as bottlenecks, tend to indicate essential genes since they can be analogized to heavily used intersection 
in major highways or bridges14,30,31. In this study, we mainly focused on the hubs or bottlenecks that were central 
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to the PPI network, identified the proteins with large degree or high BC as the key proteins, and considered the 
sub-network of these key proteins as the backbone worth further investigating the signaling pathways involved 
in HUD development.

Drug addiction is a psychiatric disorder resulting in maladaptive neuroplasticity that underlies the develop-
ment of compulsive drug seeking and vulnerability to relapse during periods of attempted abstinence32. MiRNAs 
are small non-coding RNAs (18–25 nucleotides) that post- transcriptionally modulated gene expression by either 
repressing translation or inducing degradation of mRNA33,34. Recent studies indicate that miRNAs are considered 
to be ‘master regulators’ of gene expression, and they control the translation of target mRNAs, thereby regulating 
critical aspects of neurogenesis, synaptic plasticity and neurological disorders35–38. Consequently, discovering 
miRNA-disease association makes an important contribution to understanding the pathogenesis of diseases as 
well as designing diagnostic and therapeutic approaches for diseases39–42.

Materials and Methods
The identification of the susceptibility genes associated with HUD.  We have identified the sus-
ceptibility genes associated with HUD in our previous case-control studies43,44 that included 124 Han Chinese 
men from Taiwan as the cases fulfilling the diagnostic criteria of HUD according to the Diagnostic and Statistical 
Manual of Mental Disorders, 5th edition (DSM-5), and 124 demographically similar patients as the controls get-
ting regular medical checkups at a local medical center. The details of the 248 participants and the investigating 
methods are in the previous studies43,44. Briefly, we recruited no controls with substance-related disorders or 
substance use disorders except nicotine, and no participants with the other psychiatric diagnoses such as neu-
rodevelopmental disorders, schizophrenia spectrum disorders, bipolar-related disorders, depressive disorders, 
neurocognitive disorders, etc.

From each participant, a total of 8 mL of venous blood was collected to establish the lymphoblastoid cell lines 
(LCLs) for RNA extraction and real-time quantitative PCR (qPCR) analyses. The study protocol was approved 
by the Ethical Committee of Bali Psychiatric Center (approval number: IRB970609-03), the written informed 
consents were obtained from the participants after full explanation of the protocol, and we performed all methods 
in accordance with the relevant guidelines and regulations. The identified results of the susceptibility genes asso-
ciated with HUD were AUTS2, CD74, CEBPB, CEBPG, ENO2, HAT1, IMPDH2, JUN, MBD1, PDK1, PRKCB, 
RASA1, RGS3 (listed in Table S1), and we considered them as the seed proteins to construct the PPI network 
associated with HUD.

The construction of the PPI network associated with HUD.  We used the Search Tool for the Retrieval 
of Interacting Genes/Proteins database (STRING v10.5)45 to construct the PPI network associated with HUD. 
Given a list of the proteins as input, STRING can search for their neighbor interactors, the proteins that have 
direct interactions with the inputted proteins; then STRING can generate the PPI network consisting of all these 
proteins and all the interactions between them. Based on the seed proteins as input, we first constructed the PPI 
network (Fig. 1) associated with HUD containing the seed proteins and their neighbors. All the interactions 

Figure 1.  The PPI network.
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between them were derived from high-throughput lab experiments and previous knowledge in curated databases 
at high level of confidence (sources: experiments, databases; score ≥ 0.90).

We further searched for the interactions derived from three sources, lab experiments, curated databases, and 
gene expression data, with the same confidence to construct the PPI network with the co-expression interactions 
(Fig. S1) for comparison. In addition, Gephi46, a program for large network analysis, was used to analyze the 
structure of the PPI networks.

The topological analysis of the PPI network.  To evaluate the nodes in the PPI networks, we adopted 
several topological measures including degree (k), between centrality (BC), eccentricity, closeness centrality 
(CC), eigenvector centrality (EC), and clustering coefficient47,48. The first two measures, degree (k) and BC, are 
often used for detecting the hub or bottleneck in a network. Degree (k) of a node is defined as the number of edges 
linked to it. A node with high degree (k) denotes a hub having many neighbors. BC of a node is the proportion 
of the number of shortest paths passing through it to the number of all the shortest paths in the network, quan-
tifying how often a node acts as a bridge along the shortest paths between two other nodes. A node with high 
BC has great influence on what flows in the network and has more control over the network. It can represent the 
bottleneck in the network.

Eccentricity and CC of a node are the measures of centrality in the network, defined as the maximum distance 
from the node to all other nodes and the inverse of the average length of the shortest paths between the node and 
all other nodes, respectively. A node with lower eccentricity or higher CC is closer to the other nodes and more 
central in the network. Moreover, the maximum eccentricity is the diameter of a network; the minimum eccen-
tricity is the radius of a network. The center of a network is the set of nodes of eccentricity equal to the radius.

EC assigns relative score to all nodes in the network based on the concept that connections to high-scoring 
nodes contribute more to the score of the node in question than equal connections to low-scoring nodes. 
Clustering coefficient of a node is the proportion of the edges to all the possible edges within its neighbors, quan-
tifying the closeness among its neighbors, and evaluating how small its neighbors’ world is. A node with higher 
clustering coefficient has its neighbors closer to one another, and the world of its neighbors is smaller.

Global topological measurements of networks include average degree (<k>), mean shortest path length 
(mspl), diameter (D), and average clustering coefficient (acc). The clustering coefficient is a measure of the local 
interconnectedness of the graph, whereas the shortest path length is an indicator of its overall connectedness. 
A graph is considered small-world if it has a low mspl and a high acc49–51. According to Watts and Strogatz, 
small-world networks are a class of networks that are “highly clustered, like regular lattices, yet have small char-
acteristic path lengths, like random graphs”.

The retrieval of the backbone from the PPI network.  We considered the protein nodes with high 
degree (k) or BC as the hubs or bottlenecks. They were key to the PPI network and constituted the backbone of 
the network27. Given the PPI network, we retrieved the protein nodes with top 10% highest degree (k) or BC, and 
defined the graph of these proteins as the backbone. With these proteins as input, we used STRING45 again to 
construct the 2nd extended PPI network for further comprehensive analysis.

Results
The giant component of the PPI network.  The giant component (Fig. 1) of the PPI network generated 
by STRING45 consisted of 111 nodes (Table S2) and 553 edges. The results of the topological analyses of each 
node were list in Table S3, including degree, BC, eccentricity, CC, EC, clustering coefficient, etc. The number of 
edges is larger than the expected for random network of the same size significantly (p-value ≤ 10−16); the nodes 
were more connected than randomly. It suggested that the PPI network could be considered as a relatively small 
world in comparison with random graph, and the proteins might be biologically relevant. The similar findings 
were also revealed in the results of the global topological measurements including average degree, mspl, diameter 
D, and average clustering coefficient listed in Table 1. In addition, the giant component of the PPI network with 
co-expression interactions (Fig. S1; Tables S4, S5) demonstrated the similar results, too.

The backbone in the PPI network.  The results of the topological analyses of each node in Table S3 showed 
that JUN was a hub (with the largest degree k = 43) and bottleneck (with the fourth highest BC = 0.1383) in the 
PPI network; PCK1 was only a bottleneck (with the highest BC = 0.35) but not a hub (with lower degree than 
average). We retrieved JUN, PCK1, and the other 14 proteins with top 10% largest degree (k) or highest BC and 
considered them as the hubs or bottlenecks and constituted the backbone of the giant component network (Fig. 2; 
Tables 2 and S6–S7). They were extensively connected with their neighbors in the network (the average degree: 

Symbol Description
Giant 
component

Giant component 
(co-expression)

2nd extended 
network

2nd extended network 
(co-expression)

N number of nodes 111 111 116 116

<k> average degree 9.96 ± 7.32 9.24 ± 5.94 10.86 ± 9.14

D diameter 7 8 6 7

mspl mean shortest path length 3.31 3.62 2.56 2.71

acc average clustering coefficient 0.672 0.707 0.647 0.7640

Table 1.  Global topological measurements of four PPI networks. Note: The average degrees of 16 key proteins 
in the giant component are 21.31 ± 9.78 and 18.88 ± 7.80.
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21.31 ± 9.78) and had very much control over the network (the average BC: 0.11 ± 0.08). The backbone network 
consisted of 51 edges and 16 nodes. Among them, six proteins, JUN, MAPK14, CREEP, EP300, FOS, and RELA 
were both with top 10% largest degree (k) and highest BC, while PCK1 remained the most important bottleneck 
in the backbone.

We also retrieved the backbone of the PPI network with co-expression interactions (Fig. S2 and Table S8). 
Comparing the two backbones with and without co-expression interactions, we discovered 13 proteins 
in common, and the 13-protein-subnetworks in the two backbones had the same structure (Fig. S3). The 
13-protein-subnetworks contained most nodes and edges of the backbones. As a result, the main part of the 
backbones was robust, no matter with or without co-expression interactions derived from gene expression data. 
It suggested that only the rest part of the backbones could be influenced by the perturbations of gene expression 
through co-expression interactions.

The 2nd extended PPI network.  With use of the backbone nodes as input, we implemented STRING again 
to construct the 2nd extended PPI network associated with HUD. The global topological characteristics of four 
PPI networks in this study were listed in Table 1. The 2nd extended PPI network without co-expression inter-
actions demonstrated 16 nodes for the KEGG pathways52 of alcoholism (ARAF, ATF2, BRAF, CREB1, CREB5, 
FOSB, HDAC1, HDAC2, HDAC3, HIST2H2BE, HRAS, MAP2K1, MAPK1, MAPK3, RAF1, and SOS1), 7 nodes 
of amphetamine addiction (ATF2, CREB1, CREB5, FOS, FOSB, HDAC1, and JUN), and 7 nodes of cocaine 
addiction (ATF2, CREB1, CREB5, FOSB, JUN, NFKB1, and RELA) in Table 3. The nodes of the 2nd extended PPI 
network involved in the KEGG pathways of amphetamine addiction, cocaine addiction, and alcoholism were 
colored in red, blue, and green, respectively, in Fig. 3. Moreover, the 2nd extended PPI network with co-expression 
interactions was Fig. S4 which demonstrated 10 nodes for the KEGG pathways of alcoholism, 5 nodes of amphet-
amine addiction, and 6 nodes of cocaine addiction in Table S9. In addition, the three KEGG pathways52 were 
shown in Figs S5–S7.

Figure 2.  The backbone network.

Label Name Description Degree Betweenness centrality

1 JUN Jun proto-oncogene 43 0.138335165

2 MAPK14 Mitogen-activated protein kinase 14 32 0.083166142

3 FOS FBJ murine osteosarcoma viral oncogene homolog 26 0.059760577

4 LCK Lymphocyte-specific protein tyrosine kinase 26 0.058523406

5 RELA V-rel reticuloendotheliosis viral oncogene homolog A (avian) 25 0.069572515

6 MAPK1 Mitogen-activated protein kinase 1 25 0.046624799

7 CREBBP CREB binding protein 24 0.163843625

8 ATF2 Activating transcription factor 2 24 0.022118131

9 EP300 E1A binding protein p300 23 0.129821489

10 MAPK8 Mitogen-activated protein kinase 8 22 0.044774657

11 HRAS v-Ha-ras Harvey rat sarcoma viral oncogene homolog 22 0.027715087

12 CREB1 cAMP responsive element binding protein 1 17 0.128192989

13 ITPA Inosine triphosphatase (nucleoside triphosphate pyrophosphatase) 13 0.181820962

14 PCK1 Phosphoenolpyruvate carboxykinase 1 (soluble) 7 0.354489853

15 PKLR Pyruvate kinase, liver and RBC 6 0.135446205

16 PKM Pyruvate kinase, muscle 6 0.135446205

Average 21.31 ± 9.78 0.112282 ± 0.082026

Table 2.  The proteins in the backbone network. Note: The bold ones are both in the backbone networks with 
and without co-expression setting in the STRING.
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Discussion
Several studies have been conducted on HUD and several related susceptibility genes have been reported; how-
ever, the potential mechanism underlying HUD development remains unclear53,54. The proteins encoded by sus-
ceptibility genes may determine an individual’s susceptibility to HUD through their encoded PPIs. Here, we 
studied the potential key proteins through topological analysis18,55,56. We used degree (k) and BC, the 2 measures 
widely used in network theory, as the main parameters for evaluating the nodes in the PPI network27.

This is the first study to investigate the PPI network of HUD and explore the contributions of the proteins 
encoded by the susceptibility genes associated with HUD. Initially, a total of 111 proteins were included in our 
giant component network. By considering the important topological measures (degree and BC) in a large net-
work, we selected 16 proteins to construct the backbone network: 11 with large degree, 11 with high BC, and 4 
with both large degree and high BC. In the PPI network, there were 16 proteins involved in the alcoholism path-
way, 7 proteins involved in the amphetamine addiction pathway, and 7 proteins involved in the cocaine addiction 
pathway in the KEGG. Nevertheless, although both morphine and heroin are synthesized from opium, proteins 
involved in the KEGG pathway of morphine addiction were absent in the network. According to gateway drug 
theory, alcohol and cannabis are frequently abused before illicit drugs such as cocaine and heroin. Cannabis use 
is not popular in Taiwan; therefore, the 16 proteins involved in alcoholism might be important for the further 
development of HUD. In Taiwan, the frequency of cocaine use is low; however, the frequency of amphetamine 
use, a cocaine-like stimulant, is high in clients with HUD57. It might be due to most individuals with HUD abus-
ing other substance such as amphetamine58,59.

Seven nodes including JUN, FOS, RELA, MAPK1, ATF2, HRAS, and CREB1 in the backbone are the recorded 
genes of alcoholism, amphetamine addiction, or cocaine addiction in the KEGG pathways. They are the identified 
key proteins in substance diseases involved in HUD development revealed in this study.

The most important one among them is JUN, one of the biosignatures for detecting HUD in men43 and a 
seed protein in the initial PPI network. JUN (with the largest degree and the fourth highest BC) is central to the 
PPI network, the backbone network and the 2nd extended PPI network. It has been implicated in cancer-related 
studies60 as well as studies on psychological disorders such as Alzheimer disease and schizophrenia61,62. JUN has 
been reported to be involved in amphetamine and cocaine addiction and their respective KEGG pathways63,64.

KEGG pathway Name Description

Alcoholism ARAF V-raf murine sarcoma 3611 viral oncogene homolog

Alcoholism ATF2 Activating transcription factor 2

Alcoholism BRAF V-raf murine sarcoma viral oncogene homolog B1

Alcoholism CREB1 cAMP responsive element binding protein 1

Alcoholism CREB5 cAMP responsive element binding protein 5

Alcoholism FOSB FBJ murine osteosarcoma viral oncogene homolog B

Alcoholism HDAC1 Histone deacetylase 1

Alcoholism HDAC2 Histone deacetylase 2

Alcoholism HDAC3 Histone deacetylase 3

Alcoholism HIST2H2BE Histone cluster 2, H2be

Alcoholism HRAS v-Ha-ras Harvey rat sarcoma viral oncogene homolog

Alcoholism MAPK1 Mitogen-activated protein kinase 1

Alcoholism MAP2K1 Mitogen-activated protein kinase kinase 1

Alcoholism MAPK3 Mitogen-activated protein kinase 3

Alcoholism RAF1 V-raf-1 murine leukemia viral oncogene homolog 1

Alcoholism SOS1 Son of sevenless homolog 1 (Drosophila)

Amphetamine ATF2 Activating transcription factor 2

Amphetamine CREB1 cAMP responsive element binding protein 1

Amphetamine CREB5 cAMP responsive element binding protein 5

Amphetamine FOS FBJ murine osteosarcoma viral oncogene homolog

Amphetamine FOSB FBJ murine osteosarcoma viral oncogene homolog B

Amphetamine JUN Jun proto-oncogene

Amphetamine HDAC1 Histone deacetylase 1

Cocaine ATF2 Activating transcription factor 2

Cocaine CREB1 cAMP responsive element binding protein 1

Cocaine CREB5 cAMP responsive element binding protein 5

Cocaine FOSB FBJ murine osteosarcoma viral oncogene homolog B

Cocaine JUN Jun proto-oncogene

Cocaine NFKB1 Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1

Cocaine RELA V-rel reticuloendotheliosis viral oncogene homolog A (avian)

Table 3.  The proteins in the 2nd extended PPI network involved in the KEGG pathways of alcoholism, 
amphetamine addiction, and cocaine addition.

https://doi.org/10.1038/s41598-019-41552-z


6Scientific Reports |          (2019) 9:4980  | https://doi.org/10.1038/s41598-019-41552-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

FOS, RELA, and HRAS in the backbone are known to be in the KEGG pathway associated with substance 
diseases. RELA, or v-rel avian reticuloendotheliosis viral oncogene homolog A, is also named as p65 or NF-κB 
(nuclear factor kappa-light-chain-enhancer of activated B cells) is a protein complex that controls transcription 
of DNA, cytokine production and cell survival and was found to be correlated with cancers and Alzheimer’s dis-
ease65–68. RELA (NF-κB) is known as an induced transcriptional targets of ΔFosB associated with addiction to a 
stimulus such as cocaine and the effect of reward system69–72. HRAS is a small G protein in the Ras subfamily asso-
ciated small GTPases, and familial alcohol dependence was associated with hypomethylation of CpG sites in the 
HRAS promoter region73. FOS is a 380 amino acid protein with a basic leucine zipper region for dimerisation and 
DNA-binding and a transactivation domain at C-terminus and FOS is unable to make FOS-FOS homodimers. 
JUN–FOS heterodimers are more stable and have stronger DNA-binding activity than JUN–JUN homodimers. 
FOS is known to have interaction in an animal study74. Moreover, ATF2, CREB1, CREB5, and FOSB in all three 
substance diseases (alcoholism, amphetamine, and cocaine addiction pathways). All of them except FOSB are 
selected in to the backbone network. CREB1 and CREB5 belong to CREB (cAMP response element-binding pro-
tein) family and are correlated with substance diseases75–80. FOSB belongs to FOS gene family including FOS. The 
FOS family play a role in the development and maintenance of drug addictions70,71. ATF2 interacting with JUN, 
CREB family, and other proteins in the backbone network would be discussed latter81.

Some other nodes in the backbone network are worth to study although they are not recorded in the alco-
holism, amphetamine addiction, and cocaine addiction pathways. MAPK14, is not recognized in substance dis-
eases in these KEGG pathways. However, MAPK14, also called p38-α, is an enzyme in humans encoded by the 
MAPK14 gene and a member of the MAP kinase family. The substrates of this kinase also include transcription 
regulator ATF2 on stress-activated protein kinases82. ATF2 is in the backbone network and is involved in all three 
substance diseases (alcoholism, amphetamine addiction, and cocaine addiction) in the KEGG pathways. PCK1, 
an enzyme in humans encoded by the PCK1 gene, is an important control point for the regulation of gluconeo-
genesis. PCK1 and MAPK14 were not found to be involved in any substance diseases previously but they were 
noticed in the study of schizophrenia83. MAPK14 has the 2nd large degree and 9th high BC and PCK1 has the 
highest BC in our giant component network. The two nodes provide us the new cues for further study in HUD 
and other substance diseases.

In addition, changes in miRNA expression levels are linked to neurodegeneration84 with mounting of evidence 
supporting the dysregulation of miRNA expression in psychiatric and neurological disorders35–37,85–87. MiRNAs 
might play important functions in moderating the central stress response within different brain regions via the 
regulation of genes35. As a result, miRNAs can not only serve as biomarkers of addition, but also as promising 
therapies for the prevention or treatment of neurodevelopmental and neuropathological disorders37. Based on 
proteins in Table 2, we found that some miRNAs target FOS, JUN, MAPK1, MAPK14, and RELA (Table S10) in 
the study of the brains genomic response to environmental stress35, and some of them involve in addiction such as 
cocaine, alcohol37,85. We searched for miRNA-substance-use-disorder associations from HMDD v3.0 database42, 
and there were few information related to substance use disorders (Table S11). In addition, researches of the 
miRNA-HUD associations are few38, therefore, it still remains much unknown. The recent advances of specific 
miRNAs have emerged as key regulator leading to addiction, and further studies may be central for developing 

Figure 3.  The 2nd extended PPI network. *The red ones are nodes in amphetamine addiction pathway. +The 
blue ones are nodes in cocaine addiction pathway. #The green ones are nodes in alcoholism pathway.
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novel therapeutic approaches85. Implementing predictive computational models might be potential to discovery 
miRNA biomarkers for HUD in the future39–42,88.

A limitation of this study is the lack of proteins strongly correlated with morphine addiction or HUD in the 
backbone network. This may be due to early-life exposure to alcohol or amphetamine having a greater impact on 
persons with HUD than later-life heroin use. Another limitation of this study is that we used peripheral blood as 
the sample, rather than brain tissue from areas such as nucleus accumbens89, based on a previous human study90.

Conclusion
Our finding suggests that HUD develops through an integrated PPI network with JUN (the largest degree and 
the 4th highest BC) at its center. JUN is also involved in the development of amphetamine and cocaine addiction. 
However, the role of JUN in HUD requires further clarification. FOS, RELA, ATF2, and HRAS in the backbone 
network are also recorded of one of three substance diseases in KEGG pathways. (Alcoholism, amphetamine 
addiction, cocaine addiction) ATF2, CREB1, CREB5, and FOSB in all three substance disease KEGG pathways 
are suspected be related with CREB and FOS family, and JUN. Furthermore, MAPK14 (the second largest degree 
and the 9th high BC) and PCK1 (the highest BC) have a major role in the PPI network. The present study marks 
the beginning of the formulation of the PPI network of HUD, with JUN and other two key proteins MAPK14 
and PCK1.
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