TAMIL NADU AGRICULTURAL UNIVERSITY

RAMACHANDRAN PLOT

Introduction

> Ramachandran plot - to visualize the backbone of aminoacid residues (1963-Collagen)
$>$ Used for structural validation and to calculate the possible phi and psi angles that accounts for the aminoacid residues.
> Done by several software namely WHATIF RAMACHANDRAN PLOT

Ramachandran G N
Ramakrishnan C
Sasisekharan V

Ramachandran plot

Horizontal axis - φ values
Vertical axis $-\psi$ values
Dot on the plot - angles for an AA

Counting: $-180 \rightarrow+180$
(vertical and horizontal axes)

Allowed / Low-energy region:
The regions on the plot with the highest density of dots

Steric clash: Additional interactions \rightarrow to stabilize such structures.
(They may have functional significance and may be conserved within a protein family)

Pal and Chakrabarti (2002)

The distribution of phi and psi angles for a total of $\mathbf{9 , 1 5 6} \mathbf{A A}$ residues from $\mathbf{4 , 4 1 3}$ protein chains - crystallographic data.

Two areas where the density of points are high:

1. Around $\mathbf{p h i}=\mathbf{- 6 0}$ and $\mathbf{p s i}=\mathbf{- 6 0} \rightarrow$ alpha helix
2. Around $\mathbf{p h i}=\mathbf{- 9 0}$ and $\mathbf{p s i}=\mathbf{1 2 0} \rightarrow$ beta structure

How to calculate phi and psi angles?

A simple tripeptide

Proteins have three types of backbone dihedral angles

Calculate Φ - angle

 bond and the $3 \mathrm{Ca}-3 \mathrm{C}$ bond.

The value of φ is 238.6° or -121.4°

Calculate ψ - angle

Calculate ω - angle

After plotting the angle (single peptide)

After plotting all the peptides

Regions of the plot

Red \rightarrow favored region
Brown \rightarrow allowed region
Yellow \rightarrow generously allowed region

Applications of Ramachandran plot

Validation of protein structures

\checkmark Highly anomalous φ and ψ values
\checkmark Assumed that a mistake might have occurred in the determination of the position of atoms.

Improvement of structure determination methods by NMR spectroscopy

$\checkmark \varphi$ and ψ restraints - tools for protein solution structure prediction
\checkmark Importance: Different amino acids exhibit different constraints due to

1. Variable flexibility
2. Steric effects from their side-chains.

Assessing side-chains effects on the protein backbone

\checkmark Certain amino acids prefer to form a particular kind of secondary structure over others
\checkmark The effect of single residue substitutions on the backbone conformation, and protein function

Individual residue distribution

Ala 6781 residues

Cys 1167 residues

Arg 3208 residues

Gln 2540 residues

Asn 3267 residues

Glu 3819 residues

Asp 4300 residues

Gly 6046 residues

Cont.,

His 1748 residues

Met 1342 residues

Ile 4128 residues

Phe 2904 residues

Lue 6334 residues

Pro 3185 residues

Ser 4340 residues

Cont.,

Thr 4545 residues

Trp 1197 residues A

Tyr 2764 residues

Val 5474 residues

Xpr 3185 residues

Exceptional Amino acids

Glycine

Proline

Nomenclature

Wilmot and Thornton (1990)

Efimov (1993)

Nomenclature

Oliva et al., (1997)

Wrapped Ramachandran plot

63,149 Ala-like residues (non-Gly, non-Pro)

6046 Gly residues

3D view of Ramachandran plot

References

Articles and review papers:

1. Efimov A V (1993). Standard structures in proteins. Prog Biophysics Molecular Biology 60: 201-39.
2. Hollingsworth et al., (2010). A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins. Biological Molecular Concepts, 1: 271-283.
3. Oliva et al., (1997). An automated classification of the structure of protein loops. Journal of Molecular Biology 266: 814-30.
4. Perskie LL, Street TO, Rose GD (2008). Structures, basins, and energies: a deconstruction of the Protein Coil Library. Protein Science 17: 115161.
5. Wilmot C M, Thornton J M (1990). Beta-turns and their distortions: a proposed new nomenclature. Protein Eng 3: 479-93.

References

Websites:
6. http://www.proteinstructures.com/Structure/Structure/Ramachandranplot.html
7. http://skuld.bmsc.washington.edu/~merritt/bc530/local_copies/Ramacha ndran_article.pdf
8. http://www.greeley.org/~hod/papers/Unsorted/Ramachandran.doc.pdf

THANK YOU

