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Presentation Notes
The theoretical physicist and the biochemist or molecular biologist often hold different perspectives. The physicist tends to look for general principles, and is often not practical;the biochemist is interested in the details of specific cases. One is reminded of the story that, during World War II, England had a severe shortage of milk, and the government commissioned a panel of theoretical physicists to come up with proposals to remedy the situation. After a six-month study, the chief theoretical physicist gave a presentation. His first sentence was, “Consider a spherical cow,” whereupon most officials got up and left the room. I hope you will stay with me for a bit longer.
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Consider
N monomers formed under some rule
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Protein data analysis
L. Hong & J. Lei, J. Polymer Sci. B47,207 (2009)

37182 proteins

3/5 (unfolded state)

2/5 (native state)

1/3 (solid)
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SAW (self-avoiding walk)

Model of polymer chain

5/3 (Kolomogorov 5/3 law in turbulence)
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Relation to SAW: Vortex lines. 

SAW can simulate
• unfoleded protein chain
• vortex lines  in turbulent fluid.

Power spectrum of turbulence

The Flory exponent has universality
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Water network (H bonds) Protein with hydrophobic 
residues disrupts water network

Protein folding
• hydrophobic forces 
• hydrogen bonding

Internal H bonds

• Distance O-H = 2 A

• C=O and N-H antiparallel
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Protein folding
Main forces: 
• hydrophobic forces 
• hydrogen bonding

Fast (< 1 ms) Slow (1-10 min)

3 / 5ν = 2 / 5ν =?ν =



Extension of Flory theory leads to the following generalization

L. Hong & J. Lei, J. Polymer Sci. B47,207 (2009)
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Put D=3
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Molten globule is as compact as native state: 

Expected exponent = 2/5

Pre-globule (V.N. Uversky, Protein Sci. 11, 739 (2002):

Exponent = 0.411 +- 0.016 = 3/7

Expected stages of protein folding:

We shall verify this by computer simulation of protein folding
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Simulation of protein folding:
Brownian motion of molecular chain in water

First consider
Brownian motion of one particle --- random walk.
Governed by Langevin equation:

This equation can be solved
• analytically
• through computer simulation of random walk

Perrin’s famous drawings



MonteCarlo: Simulation of  thermalization

Canonical ensemble

Conditioned random walk --- in potential G(x)

E = Energy = -dG/dx
Start with initial state
Generate random update
• If E decreases, accept it.
• If E increases, accept with probability



Start with initial SAW chain

• @ Choose arbitrary pivot
• Rotate end portion about pivot  (by changing torsion angles)
• If no overlap, accept update
• If overlap, go to @

This will generate a uniform ergodic ensemble of SAW.

Unfolded states:  SAW (self-avoiding walk)

To generate one SAW from another, use pivot algorithm:

Back to protein folding
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E = Energy of a configuration

Protein folding: CSAW (Conditioned self-avoiding walk)

This will generate a canonical ensemble of folded states.

Model depends entirely on choice of the configuration energy E.

• Start with initial chain.
• Generate SAW by pivot algorithm.
• If E decreases, accept it.
• If E increases, accept with probability



Contact no. = No. of nearest neighbors, 
not counting those along the chain.

Simplest  CSAW model:

Consider only
• hydrophobic forces
• hydrogen bonding

1
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Contact no. of hydrophobic residues

No. of hydrogen bonds
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K

=
=
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Folding of Chignolin by CSAW

Jinzhi Lei

250,000 MC steps

10 minutes on work station

Chignolin:

• Synthetic protein

• 10 amino acids

• Native state:  beta hairpin

• Honda et al, Tsukuba, 2004
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Ensemble of 
100 paths

Steps
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Phase space



Phase space
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H bonds 
begin to snap 
on

Simulation of Myoglobin (N=156)
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Hysteresis

Myoglobin (N=156)



Folding of 5 proteins by CSAW

Protein            N

Ala20              20

2b9K               47

3ait                 74

Myoglobin      153

11as               330

Elastic energy: 

E(R,N) = Ensemble average of potential energy, for given 
value of radius R.

Elastic force = -dE/dR.
22

Stages of protein folding



23



• Unfolded states scale with universal exponent 3/5

• Collapsed states scale with universal exponent 2/5

• Exception: polyalanine (N=20) (green circles)
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Replotting with different scalings
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Proposed universal form



Proposed sequence of stages
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Proposed stages of protein folding

Unfolded

Hydrophobic 
collapse 
stopped by 
jamming

Pre-globule

Viscoelastic 
rearrangement

Molten globule

H bonds provide 
rigidity. 

Native state

Side chains 
locked on

Lifetime of stages depends on protein 27
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